

    
      
          
            
  
PCSE: The Python Crop Simulation Environment

PCSE (Python Crop Simulation Environment) is a Python package for building crop simulation models,
in particular the crop models developed in Wageningen (Netherlands). PCSE provides the
environment to implement crop simulation models, the tools for reading ancillary
data (weather, soil, agromanagement) and the components for simulating biophysical
processes such as phenology, respiration and evapotranspiration. PCSE also
includes implementations of the
WOFOST [http://www.wageningenur.nl/wofost] LINGRA [https://edepot.wur.nl/336784] and
LINTUL3 [https://models.pps.wur.nl/system/files/LINTUL-N-Shibu-article_1.pdf]
crop and grassland simulation models
which have been widely used around the world. For example, WOFOST has been implemented in
the MARS crop yield forecasting system which is used operationally for crop monitoring and
yield prediction in Europe and beyond.

Originally, models developed in Wageningen were often written using FORTRAN or the
FORTRAN Simulation Environment (FSE). Both are very good tools, but they have become
somewhat outdated and are difficult to integrate with many of the great tools that are available
nowadays (XML, databases, web, etc).
Like so many other software packages, PCSE was developed to facilitate my own research work. I wanted something
that was more easy to work with, more interactive and more flexible while still implementing
the sound computational approach of FSE. For this reason PCSE was developed in Python
hsa become an important programming language for scientific purposes.

Traditionally, crop simulation models in Wageningen have been provided including the
full source code. PCSE is no exception and its source code is open and licensed under the
European Union Public License. PCSE runs on Python 2.7+ and 3.2+ and has a decent
test coverage of the implementation of the biophysical processes.
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An overview of new features and fixes


What’s new in PCSE 5.5

PCSE 5.5 has the following new features:


	WOFOST version 8.0 (beta) has been included which has variants for potential (PP), water-limited (WLP) and
nutrient + water-limited (NWLP) production. Note that dynamics for N/P/K are included in all model variants
but for the PP and WLP variants the supply of N/P/K is assumed to be unlimited. Note that this a beta version
because testing of the N/P/K limited growth against experimental data has so far been limited. Nevertheless,
the dynamics for N/P/K are based on well known principles from other models and rely on the concept of dilution
curves that define the maximum, critical and residual N/P/K concentration in the crop.


	A full implementation of the LINGRA and LINGRA-N grassland simulation models are now included. This model allows
to make estimates of productivity of rye grass.


	WOFOST 7.1 has been upgraded to 7.2, this is mainly to be consistent with the updated system description
for WOFOST at https://wofost.readthedocs.io. Old code that relies on importing WOFOST 7.1 will keep working
though.


	The WOFOST 7.2 phenology module can now be imported as a standalone model. This is useful when calibration is
limited to phenology as it greatly increases the model performance.


	The FAO Water Requirement Satisfaction Index is included as a model.






What’s new in PCSE 5.4

PCSE 5.4 has the following new features:


	PCSE is now fully compatible with python3 (>3.4) while still remaining compatibility with python 2.7.14


	The NASAPOWERWeatherDataProvider has been upgraded to take the new API into account






What’s new in PCSE 5.3

PCSE 5.3 has the following new features:


	The WOFOST crop parameters have been reorganized into a new data structure and file format (e.g. YAML)
and are available from github [https://github.com/ajwdewit/WOFOST_crop_parameters]. PCSE 5.3 provides the YAMLCropDataProvider
to read the new parameters files. The YAMLCropDataProvider works together with the AgroManager for
specifying parameter sets for crop rotations.


	A new CGMSEngine that mimics the behaviour of the classic CGMS. This means
the engine can be run up till a specified date. When maturity or harvest is reached, the value of  all
state variables will be retained and kept constant until the specified date is reached.


	Caching was added to the CGMS weather data providers, this is particularly useful for repeated
runs as the weather data only have to be retrieved once from the CGMS database.




Some bugs have been fixed:


	The NASA POWER database moved from http:// to https:// so an update of the NASAPowerWeatherDataProvider
was needed.


	When running crop rotations it was found that python did not garbage collect the crop simulation objects
quick enough. This is now fixed with an explicit call to the garbage collector.






What’s new in PCSE 5.2

PCSE version 5.2 brings the following new features:


	The LINTUL3 model has been implemented in PCSE. LINTUL3 is a simple crop growth model for simulating
growth conditions under water-limited and nitrogen-limited conditions.


	A new module for N/P/K limitations in WOFOST was implemented allowing to simulate the impact of N/P/K
limitations on crop growth in WOFOST.


	A new AgroManager which greatly enhances the way that AgroManagement can be handled in PCSE.
The new agromanager
can elegantly combine cropping calendars, timed events and state events also within rotations over several cropping
campaigns. The AgroManager uses a new format based on YAML to store agromanagement definitions.


	The water-limited production simulation with WOFOST now supports irrigation using the new AgroManager.
An example notebook has been added to explain the different irrigation options.


	Support for reading input data from a CGMS8 and CGMS14 database




Changes in 5.2.5:


	Bug fixes in agromanager causing problems with crop_end_type=”earliest” or “harvest”


	Caching was added to the CGMS weather data providers


	Added CGMSEngine that mimics behaviour of the classic CGMS: after the cropping season is over, a call
to _run() will increase the DAY, but the internal state variables do not change anymore, although they
are kept available and can be queried and stored in OUTPUT.






What’s new in PCSE 5.1

PCSE version 5.1 brings the following new features:


	Support for reading input data (weather, soil, crop parameters) from a CGMS12 database. CGMS is the acronym for
Crop Growth Monitoring System and was developed by Alterra in cooperation with the MARS unit of the Joint Research
Centre for crop monitoring and yield forecasting in Europe. It uses a database structure for storing weather
data and model simulation results which can be read by PCSE. See the MARSwiki [http://marswiki.jrc.ec.europa.eu/agri4castwiki/index.php/Appendix_5:_CGMS_tables] for the database definition.


	The ExcelWeatherDataProvider: Before PCSE 5.2 the only file-based format for weather data was the CABO weather format
read by the CABOWeatherDataProvider. Althought the format is well documented,
creating CABO weather files is a bit cumbersome as for each year a new file has to be created and mistakes are
easily made. Therefore, the ExcelWeatherDataProvider was created that
reads its input from a Microsoft Excel file. See here for an example of an Excel weather file: downloads/nl1.xlsx.








            

          

      

      

    

  

    
      
          
            
  
Models available in PCSE

The following table lists the models that are available in PCSE and can be imported from pcse.models package.







	Model name

	Description





	Wofost72_PP

	An implementation of WOFOST 7.2 for potential production scenarios.



	Wofost72_WLP_FD

	An implementation of WOFOST 7.2 for water-limited production scenarios with freely draining soils.



	Wofost80_PP_beta

	An implementation of WOFOST 8.0 for potential production scenarios including N/P/K dynamics



	Wofost80_WLP_FD_beta

	An implementation of WOFOST 8.0 for water-limited production scenarios including N/P/K dynamics
for freely draining soils.



	Wofost80_NWLP_FD_beta

	An implementation of WOFOST 8.0 for water-limited and nutrient-limited production scenarios
including N/P/K dynamics for freely draining soils.



	LINGRA_PP

	A LINGRA implementation for simulating potential production scenarios.



	LINGRA_WLP_FD

	A LINGRA implementation for simulating water-limited production scenarios with freely draining soils.



	LINTUL3

	An implementation of the LINTUL3 model for production scenarios under water-limited and nitrogen-
limited production scenarios.



	FAO_WRSI

	An implementation of the Water Requirement Satisfaction Index model. This re-uses components
from WOFOST to create a simpler approach which computes water requirements and water availability.



	Wofost72_Phenology

	The phenology modules from WOFOST 7.2 as a standalone model. This is purely for convenience as in
some cases running the phenology is sufficient and this is much faster then running the full
WOFOST model.









            

          

      

      

    

  

    
      
          
            
  
User Guide


Background of PCSE


Crop models in Wageningen

The Python Crop Simulation Environment was developed because of a need to re-implement crop simulation
models that were developed in Wageningen. Many of the Wageningen crop simulation models were originally developed in
FORTRAN77 or using the FORTRAN Simulation Translator (FST). Although this approach has yielded high quality models
with high numerical performance, the inherent limitations of models written in FORTRAN is also becoming increasingly
evident:


	The structure of the models is often rather monolithic and the different parts are very tightly coupled.
Replacing parts of the model with another simulation approach is not easy.


	The models rely on file-based I/O which is difficult to change. For example, interfacing with databases
is complicated in FORTRAN.


	In general, with low-level languages like FORTRAN, simple things already take many lines of code and mistakes
are easily made, particularly by agronomists and crop scientist that have limited experience in developing or
adapting software.




To overcome many of the limitations above, the Python Crop Simulation Environment (PCSE) was developed. It provides
an environment for developing simulation models as well as a number of implementations of crop simulation models.
PCSE is written in pure Python code which makes it more flexible, easier to modify and extensible allowing easy
interfacing with databases, graphical user interfaces, visualization tools and numerical/statistical packages. PCSE has
several interesting features:


	Implementation in pure Python. The core system has a small number of dependencies outside the Python standard
library. However many data providers require certain packages to be installed. Most of these can be automatically
installed from the Python Package Index (PyPI) (SQLAlchemy, PyYAML, xlrd, openpyxl, requests) and in
processing of the output of models is most easily done with pandas DataFrames.


	Modular design allowing you to add or change components relatively quickly with a simple but powerful approach
to communicate variables between modules.


	Similar to FST, it enforces good model design by explicitly separating parameters, rate variables and state
variables. Moreover PCSE takes care of the module initialization, calculation of rates of changes, updating
of state variables and actions needed to finalize the simulation.


	Input/Output is completely separated from the simulation model itself. Therefore PCSE models can easily
read from and write to text files, databases and scientific formats such as HDF or NetCDF. Moreover, PCSE
models can be easily embedded in, for example, docker containers to build a web API around a crop model.


	Built-in testing of program modules ensuring integrity of the system






Why Python

PCSE was first and foremost developed from a scientific need, to be able to quickly adapt models and test ideas.
In science, Python is quickly becoming a tool for implementing algorithms, visualization and explorative analysis
due to its clear syntax and ease of use. An additional advantage is that the C implementation of Python
can be easily interfaced with routines written in FORTRAN and therefore many FORTRAN routines can be reused by
simulation models written with PCSE.

Many packages exist for numeric analysis (e.g. NumPy, SciPy),
visualisation (e.g. MatPlotLib, Chaco), distributed computing (e.g. IPython, pyMPI) and interfacing with databases
(e.g. SQLAlchemy). Moreover, for statistical analyses an interface with R-project can be established through
Rpy or Rserve. Finally, Python is an Open Source interpreted programming language that
runs on almost any hardware and operating system.

Given the above considerations, it was quickly recognized that Python was a good choice. Although, PCSE was
developed for scientific purposes, it has already been implemented for tasks in production environments and has been
embedded in container-based web services.



History of PCSE

Up until version 4.1, PCSE was called “PyWOFOST” as its primary goal was to provide a Python
implementation of the WOFOST crop simulation model.
However, as the system has grown it has become evident that the system can be used to implement, extend or
hybridize (crop) simulation models. Therefore, the name “PyWOFOST” became too narrow and the name Python Crop
Simulation Environment was selected in analog with the FORTRAN Simulation Environment (FSE).



Limitations of PCSE

PCSE also has its limitations, in fact there are several:


	Speed: flexibility comes a at a price; PCSE is considerably slower than equivalent models written in FORTRAN or
another compiled language.


	The simulation approach in PCSE is currently limited to rectangular (Euler) integration with a fixed daily
time-step. Although the internal time-step of modules can be made more fine-grained if needed.


	No graphical user interface. However the lack of a user interface is partly compensated by using PCSE with the
pandas [http://pandas.pydata.org/] package and the Jupyter notebook [https://jupyter.org/].
PCSE output can be easily converted to a pandas DataFrame which can be used to display charts in an Jupyter
notebook. See also my collection of notebooks with examples using PCSE [https://github.com/ajwdewit/pcse_notebooks]






License

The source code of PCSE is made available under the European Union
Public License (EUPL), Version 1.2 or as soon they will be approved by the
European Commission - subsequent versions of the EUPL (the “Licence”).
You may not use this work except in compliance with the Licence. You may obtain
a copy of the Licence at: https://joinup.ec.europa.eu/community/eupl/og_page/eupl

The PCSE package contains some modules that have been taken and/or modified
from other open source projects:


	the pydispatch module obtained from http://pydispatcher.sourceforge.net/
which is distributed under a BSD style license.


	The traitlets module which was taken and adapted from the
IPython project (https://ipython.org/) which are distributed under a
BSD style license. A PCSE specific version of traitlets was created
and is available here [https://pypi.org/project/traitlets-pcse/]




See the project pages of both projects for exact license terms.




Installing PCSE


Requirements and dependencies

PCSE is being developed on Ubuntu Linux 18.04 and Windows 10 using python 3.7 and python 3.8
As Python is a platform independent language, PCSE works equally well on Linux, Windows or Mac OSX.
Before installing PCSE, Python itself must be installed on your system which we will demonstrate
below. PCSE has a number of dependencies on other python packages which are the following:

- SQLAlchemy>=0.8.0
- PyYAML>=3.11
- xlrd>=0.9.3
- openpyxl>=3.0
- requests>=2.0.0
- pandas>=0.20
- traitlets-pcse==5.0.0.dev





The last package in the list is a modified version of the traitlets [https://traitlets.readthedocs.io/en/stable/] package which provides some
additional functionality used by PCSE.



Setting up your python environment

A convenient way to set up your python environment for PCSE is through the Anaconda [https://store.continuum.io/cshop/anaconda/] python distribution.
In the present PCSE Documentation all examples of installing and using PCSE refer to the Windows 10 platform.

First, we suggest you download and install the MiniConda [http://conda.pydata.org/miniconda.html] python distribution which provides a minimum
python environment that we will use to bootstrap a dedicated environment for PCSE. For the rest
of this guide we will assume that you use Windows 10 and install the
64bit miniconda for python 3 (Miniconda3-latest-Windows-x86_64.exe). The environment that
we will create contains not only the dependencies for PCSE, it also includes many other useful packages
such as IPython [https://ipython.org/], `Pandas`_ and the Jupyter notebook [https://jupyter.org/]. These packages will be used in the Getting Started section
as well.

After installing MiniConda you should open a command box and check that conda is installed properly:

(py3_pcse) C:\>conda info

         active environment : py3_pcse
        active env location : C:\data\Miniconda3\envs\py3_pcse
                shell level : 3
           user config file : C:\Users\wit015\.condarc
     populated config files : C:\Users\wit015\.condarc
              conda version : 4.9.2
        conda-build version : not installed
             python version : 3.8.5.final.0
           virtual packages : __win=0=0
                              __archspec=1=x86_64
           base environment : C:\data\Miniconda3  (writable)
               channel URLs : https://conda.anaconda.org/conda-forge/win-64
                              https://conda.anaconda.org/conda-forge/noarch
                              https://repo.anaconda.com/pkgs/main/win-64
                              https://repo.anaconda.com/pkgs/main/noarch
                              https://repo.anaconda.com/pkgs/r/win-64
                              https://repo.anaconda.com/pkgs/r/noarch
                              https://repo.anaconda.com/pkgs/msys2/win-64
                              https://repo.anaconda.com/pkgs/msys2/noarch
              package cache : C:\data\Miniconda3\pkgs
                              C:\Users\wit015\.conda\pkgs
                              C:\Users\wit015\AppData\Local\conda\conda\pkgs
           envs directories : C:\data\Miniconda3\envs
                              C:\Users\wit015\.conda\envs
                              C:\Users\wit015\AppData\Local\conda\conda\envs
                   platform : win-64
                 user-agent : conda/4.9.2 requests/2.24.0 CPython/3.8.5 Windows/10 Windows/10.0.18362
              administrator : False
                 netrc file : None
               offline mode : False





Now we will use a Conda environment file to recreate the python environment that we use to develop and run
PCSE. First you should download the conda environment file which comes in two flavours, an
environment for running PCSE on python 3 (downloads/py3_pcse.yml) and one for python 2
(downloads/py2_pcse.yml). It is strongly recommended to use the python 3 version as python 2
is not maintained anymore. Both environments include the Jupyter notebook and IPython which are
needed for running the getting started section and the example notebooks. Save the environment file
on a temporary location such as d:\temp\make_env\. We will now create a dedicated virtual environment
using the command conda env create and tell conda to use the environment file for python3 with the
option -f p3_pcse.yml as show below:

(C:\Miniconda3) D:\temp\make_env>conda env create -f py3_pcse.yml
Fetching package metadata .............
Solving package specifications: .
intel-openmp-2 100% |###############################| Time: 0:00:00   6.39 MB/s

... Lots of output here

Installing collected packages: traitlets-pcse
Successfully installed traitlets-pcse-5.0.0.dev0
#
# To activate this environment, use:
# > activate py3_pcse
#
# To deactivate an active environment, use:
# > deactivate
#
# * for power-users using bash, you must source
#





You can then activate your environment (note the addition of (py3_pcse) on your command prompt):

D:\temp\make_env>activate py3_pcse
Deactivating environment "C:\Miniconda3"...
Activating environment "C:\Miniconda3\envs\py3_pcse"...

(py3_pcse) D:\temp\make_env>







Installing PCSE

The easiest way to install PCSE is through the python package index (PyPI [https://pypi.python.org/pypi/PCSE]).
Installing from PyPI is mostly useful if you are interested in using the functionality
provided by PCSE in your own scripts, but are not interested in modifying or contributing to
PCSE itself. Installing from PyPI is done using the package installer pip which searches
the python package index for a package, downloads and installs it into your python
environment (example below for PCSE 5.4):

(py3_pcse) D:\temp\make_env>pip install pcse

Collecting pcse
  Downloading https://files.pythonhosted.org/packages/8c/92/d4444cce1c58e5a96f4d6dc9c0e042722f2136df24a2750352e7eb4ab053/PCSE-5.4.0.tar.gz (791kB)
    100% |¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦| 798kB 1.6MB/s
Requirement already satisfied: numpy>=1.6.0 in c:\miniconda3\envs\py3_pcse\lib\site-packages (from pcse) (1.15.1)
Requirement already satisfied: SQLAlchemy>=0.8.0 in c:\miniconda3\envs\py3_pcse\lib\site-packages (from pcse) (1.2.11)
Requirement already satisfied: PyYAML>=3.11 in c:\miniconda3\envs\py3_pcse\lib\site-packages (from pcse) (3.13)
Requirement already satisfied: xlrd>=0.9.3 in c:\miniconda3\envs\py3_pcse\lib\site-packages (from pcse) (1.1.0)
Requirement already satisfied: xlwt>=1.0.0 in c:\miniconda3\envs\py3_pcse\lib\site-packages (from pcse) (1.3.0)
Requirement already satisfied: requests>=2.0.0 in c:\miniconda3\envs\py3_pcse\lib\site-packages (from pcse) (2.19.1)
Requirement already satisfied: pandas>=0.20 in c:\miniconda3\envs\py3_pcse\lib\site-packages (from pcse) (0.23.4)
Requirement already satisfied: traitlets-pcse==5.0.0.dev in c:\miniconda3\envs\py3_pcse\lib\site-packages (from pcse) (5.0.0.dev0)
Requirement already satisfied: chardet<3.1.0,>=3.0.2 in c:\miniconda3\envs\py3_pcse\lib\site-packages (from requests>=2.0.0->pcse) (3.0.4)
Requirement already satisfied: idna<2.8,>=2.5 in c:\miniconda3\envs\py3_pcse\lib\site-packages (from requests>=2.0.0->pcse) (2.7)
Requirement already satisfied: certifi>=2017.4.17 in c:\miniconda3\envs\py3_pcse\lib\site-packages (from requests>=2.0.0->pcse) (2018.8.24)
Requirement already satisfied: urllib3<1.24,>=1.21.1 in c:\miniconda3\envs\py3_pcse\lib\site-packages (from requests>=2.0.0->pcse) (1.23)
Requirement already satisfied: python-dateutil>=2.5.0 in c:\miniconda3\envs\py3_pcse\lib\site-packages (from pandas>=0.20->pcse) (2.7.3)
Requirement already satisfied: pytz>=2011k in c:\miniconda3\envs\py3_pcse\lib\site-packages (from pandas>=0.20->pcse) (2018.5)
Requirement already satisfied: six in c:\miniconda3\envs\py3_pcse\lib\site-packages (from traitlets-pcse==5.0.0.dev->pcse) (1.11.0)
Requirement already satisfied: decorator in c:\miniconda3\envs\py3_pcse\lib\site-packages (from traitlets-pcse==5.0.0.dev->pcse) (4.3.0)
Requirement already satisfied: ipython-genutils in c:\miniconda3\envs\py3_pcse\lib\site-packages (from traitlets-pcse==5.0.0.dev->pcse) (0.2.0)
Building wheels for collected packages: pcse
  Running setup.py bdist_wheel for pcse ... done
  Stored in directory: C:\Users\wit015\AppData\Local\pip\Cache\wheels\2f\e6\2c\3952ff951dffea5ab2483892edcb7f9310faa319d050d3be6c
Successfully built pcse
twisted 18.7.0 requires PyHamcrest>=1.9.0, which is not installed.
mkl-random 1.0.1 requires cython, which is not installed.
mkl-fft 1.0.4 requires cython, which is not installed.
Installing collected packages: pcse
Successfully installed pcse-5.4.0





If you are wondering what the difference between pip and conda are than have a look
here [https://stackoverflow.com/questions/20994716/what-is-the-difference-between-pip-and-conda#20994790]

If you want to develop with or contribute to PCSE, than you should fork the PCSE
repository [https://github.com/ajwdewit/pcse] on GitHub and get a local copy of PCSE using git clone. See the help on github [https://help.github.com/]
and for Windows/Mac users the GitHub Desktop [https://desktop.github.com/] application.



Testing PCSE

To guarantee its integrity, the PCSE package includes a limited number of internal
tests that are installed automatically with PCSE. In addition, the PCSE
git repository has a large number of the tests in the test folder which do a more
thorough job in testing but will take a long time to complete (e.g. an hour or more).
The internal tests present users with a quick way to ensure that the output produced
by the different components matches with the expected outputs. While the full test
suite is useful for developers only.

Test data for the internal tests can be found in the pcse.tests.test_data package as
well as in an SQLite database (pcse.db). This database can be found under
.pcse in your home folder and will be automatically created when importing
PCSE for the first time. When you delete the database file manually it will be
recreated next time you import PCSE.

For running the internal tests of the PCSE package we need to start python and import pcse:

(py3_pcse) D:\temp\make_env>python
Python 3.6.5 (default, Aug 14 2018, 19:12:50) [MSC v.1900 32 bit (Intel)] :: Anaconda, Inc. on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import pcse
Building PCSE demo database at: C:\Users\wit015\.pcse\pcse.db ... OK
>>>





Next, the tests can be executed by calling the test() function at the top of the package:

.. code-block:: doscon






>>> pcse.test()
runTest (pcse.tests.test_abioticdamage.Test_FROSTOL) ... ok
runTest (pcse.tests.test_partitioning.Test_DVS_Partitioning) ... ok
runTest (pcse.tests.test_evapotranspiration.Test_PotentialEvapotranspiration) ... ok
runTest (pcse.tests.test_evapotranspiration.Test_WaterLimitedEvapotranspiration1) ... ok
runTest (pcse.tests.test_evapotranspiration.Test_WaterLimitedEvapotranspiration2) ... ok
runTest (pcse.tests.test_respiration.Test_WOFOSTMaintenanceRespiration) ... ok
runTest (pcse.tests.test_penmanmonteith.Test_PenmanMonteith1) ... ok
runTest (pcse.tests.test_penmanmonteith.Test_PenmanMonteith2) ... ok
runTest (pcse.tests.test_penmanmonteith.Test_PenmanMonteith3) ... ok
runTest (pcse.tests.test_penmanmonteith.Test_PenmanMonteith4) ... ok
runTest (pcse.tests.test_agromanager.TestAgroManager1) ... ok
runTest (pcse.tests.test_agromanager.TestAgroManager2) ... ok
runTest (pcse.tests.test_agromanager.TestAgroManager3) ... ok
runTest (pcse.tests.test_agromanager.TestAgroManager4) ... ok
runTest (pcse.tests.test_agromanager.TestAgroManager5) ... ok
runTest (pcse.tests.test_agromanager.TestAgroManager6) ... ok
runTest (pcse.tests.test_agromanager.TestAgroManager7) ... ok
runTest (pcse.tests.test_agromanager.TestAgroManager8) ... ok
runTest (pcse.tests.test_wofost.TestWaterlimitedPotato) ... ok
runTest (pcse.tests.test_wofost.TestPotentialSunflower) ... ok
runTest (pcse.tests.test_wofost.TestWaterlimitedWinterRapeseed) ... ok
runTest (pcse.tests.test_wofost.TestPotentialSpringBarley) ... ok
runTest (pcse.tests.test_wofost.TestPotentialGrainMaize) ... ok
runTest (pcse.tests.test_wofost.TestWaterlimitedSpringBarley) ... ok
runTest (pcse.tests.test_wofost.TestPotentialWinterRapeseed) ... ok
runTest (pcse.tests.test_wofost.TestPotentialWinterWheat) ... ok
runTest (pcse.tests.test_wofost.TestWaterlimitedSunflower) ... ok
runTest (pcse.tests.test_wofost.TestWaterlimitedWinterWheat) ... ok
runTest (pcse.tests.test_wofost.TestWaterlimitedGrainMaize) ... ok
runTest (pcse.tests.test_wofost.TestPotentialPotato) ... ok
runTest (pcse.tests.test_wofost80.TestWOFOST80_Potential_WinterWheat) ... ok
runTest (pcse.tests.test_wofost80.TestWOFOST80_WaterLimited_WinterWheat) ... ok





Ran 32 tests in 39.809s

OK




If the model output matches the expected output the test will report ‘OK’,
otherwise an error will be produced with a detailed traceback on where the
problem occurred. Note that the results may deviate from the output above
when tests were added or removed.

Moreover, SQLAlchemy may complain with a warning that can be safely ignored:

C:\Miniconda3\envs\py3_pcse\lib\site-packages\sqlalchemy\sql\sqltypes.py:603: SAWarning:
Dialect sqlite+pysqlite does *not* support Decimal objects natively, and SQLAlchemy must
convert from floating point - rounding errors and other issues may occur. Please consider
storing Decimal numbers as strings or integers on this platform for lossless storage.








Getting started

This guide will help you install PCSE as well as provide
some examples to get you started with modelling. The examples are currently focused on applying
the WOFOST and LINTUL3 crop simulation models, although other crop simulation models may become available within
PCSE in the future.



An interactive PCSE/WOFOST session

The easiest way to demonstrate PCSE is to import WOFOST from PCSE and run it from
an interactive Python session. We will be using the start_wofost() script that
connects to a the demo database which contains meteorologic data, soil data,
crop data and management data for a grid location in South-Spain.

Let’s start a WOFOST object for modelling winter-wheat (crop=1) on a
location in South-Spain (grid 31031) for the year 2000 under water-limited
conditions for a freely draining soil (mode=’wlp’):

>>> wofost_object = pcse.start_wofost(grid=31031, crop=1, year=2000, mode='wlp')
>>> type(wofost_object)
<class 'pcse.models.Wofost72_WLP_FD'>





You have just successfully initialized a PCSE/WOFOST object in the Python
interpreter, which is in its initial state and waiting to do some simulation. We
can now advance the model state for example with 1 day:

>>> wofost_object.run()





Advancing the crop simulation with only 1 day, is often not so useful so the
number of days to simulate can be specified as well:

>>> wofost_object.run(days=10)





Retrieving information about the calculated model states or rates
can be done with the get_variable() method on a PCSE object.
For example, to retrieve the leaf area index value in the current
model state you can do:

>>> wofost_object.get_variable('LAI')
0.28708095263317146
>>> wofost_object.run(days=25)
>>> wofost_object.get_variable('LAI')
1.5281215808337203





Showing that after 11 days the LAI value is 0.287. When we increase time
with another 25 days, the LAI increases to 1.528. The get_variable method
can retrieve any state or rate variable that is defined somewhere in the
model. Finally, we can finish the crop season by letting it run until the
model terminates because the crop reaches maturity or the harvest date:

>>> wofost_object.run_till_terminate()





Next we retrieve the simulation results at each time-step (‘output’) of the
simulation:

>>> output = wofost_object.get_output()





We can now use the pandas package to turn the simulation output into a
dataframe which is much easier to handle and can be exported to different
file types. For example an excel file which should look like this
downloads/wofost_results.xls:

>>> import pandas as pd
>>> df = pd.DataFrame(output)
>>> df.to_excel("wofost_results.xls")





Finally, we can retrieve the results at the end of the crop cycle (summary results)
and have a look at these as well:

>>> summary_output = wofost_object.get_summary_output()
>>> msg = "Reached maturity at {DOM} with total biomass {TAGP} kg/ha "\
"and a yield of {TWSO} kg/ha."
>>> print(msg.format(**summary_output[0]))
Reached maturity at 2000-05-31 with total biomass 15261.7521735 kg/ha and a yield of 7179.80460783 kg/ha.

>>> summary_output
[{'CTRAT': 22.457536342947606,
  'DOA': datetime.date(2000, 3, 28),
  'DOE': datetime.date(2000, 1, 1),
  'DOH': None,
  'DOM': datetime.date(2000, 5, 31),
  'DOS': None,
  'DOV': None,
  'DVS': 2.01745939841335,
  'LAIMAX': 6.132711275237731,
  'RD': 60.0,
  'TAGP': 15261.752173534584,
  'TWLV': 3029.3693107257263,
  'TWRT': 1546.990661062695,
  'TWSO': 7179.8046078262705,
  'TWST': 5052.578254982587}]






Running PCSE/WOFOST with custom input data

For running PCSE/WOFOST (and PCSE models in general) with your own data sources you need three different types of
inputs:


	Model parameters that parameterize the different model components. These parameters usually
consist of a set of crop parameters (or multiple sets in case of crop rotations), a set of soil parameters
and a set of site parameters. The latter provide ancillary parameters that are specific for a location.


	Driving variables represented by weather data which can be derived from various sources.


	Agromanagement actions which specify the farm activities that will take place on the field that is simulated
by PCSE.




For the second example we will run a simulation for sugar beet in
Wageningen (Netherlands) and we will read the input data step by step from
several different sources instead of using the pre-configured start_wofost()
script. For the example we will assume that data files are in the directory
D:\userdata\pcse_examples and all the parameter files needed can be
found by unpacking this zip file downloads/quickstart_part2.zip.

First we will import the necessary modules and define the data directory:

>>> import os
>>> import pcse
>>> import matplotlib.pyplot as plt
>>> data_dir = r'D:\userdata\pcse_examples'






Crop parameters

The crop parameters consist of parameter names and the
corresponding parameter values that are needed to parameterize the
components of the crop simulation model. These are
crop-specific values regarding phenology, assimilation, respiration,
biomass partitioning, etc. The parameter file for sugar beet
is taken from the crop files in the WOFOST Control Centre [http://www.wageningenur.nl/wofost].

The crop parameters for many models in
Wageningen are often provided in the CABO format that could be read
with the TTUTIL [http://edepot.wur.nl/17847] FORTRAN library. PCSE
tries to be backward compatible as much as possible and provides the
CABOFileReader for reading parameter files in CABO format.
the CABOFileReader returns a dictionary with the parameter name/value pairs:

>>> from pcse.fileinput import CABOFileReader
>>> cropfile = os.path.join(data_dir, 'sug0601.crop')
>>> cropdata = CABOFileReader(cropfile)
>>> print(cropdata)





Printing the cropdata dictionary gives you a listing of the header and
all parameters and their values.



Soil parameters

The soildata dictionary provides the parameter name/value pairs related
to the soil type and soil physical properties. The number of parameters is
variable depending on the soil water balance type that is used for the
simulation. For this example, we will use the water balance for freely
draining soils and use the soil file for medium fine sand: ec3.soil.
This file is also taken from the soil files in the WOFOST Control Centre [http://www.wageningenur.nl/wofost]

>>> soilfile = os.path.join(data_dir, 'ec3.soil')
>>> soildata = CABOFileReader(soilfile)







Site parameters

The site parameters provide ancillary parameters that are not related to
the crop or the soil. Examples are the initial conditions of
the water balance such as the initial soil moisture content (WAV) and
the initial and maximum surface storage (SSI, SSMAX). Also the
atmospheric CO2 concentration is a typical site parameter.
For the moment, we can define these parameters directly on the Python commandline
as a simple python dictionary. However, it is more convenient to use the
WOFOST71SiteDataProvider that documents the
site parameters and provides sensible defaults:

>>> from pcse.util import WOFOST71SiteDataProvider
>>> sitedata = WOFOST71SiteDataProvider(WAV=100, CO2=360)
>>> print(sitedata)
{'SMLIM': 0.4, 'NOTINF': 0, 'CO2': 360.0, 'SSI': 0.0, 'SSMAX': 0.0, 'IFUNRN': 0, 'WAV': 100.0}





Finally, we need to pack the different sets of parameters into one variable
using the ParameterProvider. This is needed because PCSE expects one
variable that contains all parameter values. Using this approach has the
additional advantage that parameters value can be easily overridden in case
of running multiple simulations with slightly different parameter values:

>>> from pcse.base import ParameterProvider
>>> parameters = ParameterProvider(cropdata=cropdata, soildata=soildata, sitedata=sitedata)







AgroManagement

The agromanagement inputs provide the start date of the agricultural campaign,
the start_date/start_type of the crop simulation, the end_date/end_type of the crop
simulation and the maximum duration of the crop simulation. The latter is
included to avoid unrealistically long simulations for example as a results of
a too high temperature sum requirement.

The agromanagement inputs are defined with a special syntax called YAML [http://yaml.org/] which allows
to easily create more complex structures which is needed for defining the agromanagement.
The agromanagement file for sugar beet in Wageningen sugarbeet_calendar.agro can be read with
the YAMLAgroManagementReader:

>>> from pcse.fileinput import YAMLAgroManagementReader
>>> agromanagement_file = os.path.join(data_dir, 'sugarbeet_calendar.agro')
>>> agromanagement = YAMLAgroManagementReader(agromanagement_file)
>>> print(agromanagement)
 !!python/object/new:pcse.fileinput.yaml_agro_loader.YAMLAgroManagementReader
 listitems:
 - 2000-01-01:
     CropCalendar:
       crop_name: sugarbeet
       variety_name: sugar_beet_601
       crop_start_date: 2000-04-05
       crop_start_type: emergence
       crop_end_date: 2000-10-20
       crop_end_type: harvest
       max_duration: 300
     StateEvents: null
     TimedEvents: null







Daily weather observations

Daily weather variables are needed for running the simulation. There are several
data providers in PCSE for reading weather data, see the section on
weather data providers to get an overview.

For this example we will use the weather data from the NASA Power database
which provides global weather data with a spatial resolution of 0.5 degree (~50 km).
We will retrieve the data from the Power database for the location of Wageningen.
Note that it can take around 30 seconds
to retrieve the weather data from the NASA Power server the first time:

>>> from pcse.db import NASAPowerWeatherDataProvider
>>> wdp = NASAPowerWeatherDataProvider(latitude=52, longitude=5)
>>> print(wdp)
Weather data provided by: NASAPowerWeatherDataProvider
--------Description---------
NASA/POWER SRB/FLASHFlux/MERRA2/GEOS 5.12.4 (FP-IT) 0.5 x 0.5 Degree Daily Averaged Data
----Site characteristics----
Elevation:    4.7
Latitude:  52.000
Longitude:  5.000
Data available for 1983-07-01 - 2018-09-16
Number of missing days: 8







Importing, initializing and running a PCSE model

Internally, PCSE uses a simulation engine to run a crop simulation. This
engine takes a configuration file that specifies the components for the crop,
the soil and the agromanagement that need to be used for the simulation.
So any PCSE model can be started by importing the engine and initializing
it with a given configuration file and the corresponding parameters, weather
data and agromanagement.

However, as many users of PCSE only need a particular configuration (for
example the WOFOST model for potential production), preconfigured Engines
are provided in pcse.models. For the sugarbeet example we will import
the WOFOST model for water-limited simulation under freely draining soil
conditions:

>>> from pcse.models import Wofost71_WLP_FD
>>> wofsim = Wofost71_WLP_FD(parameters, wdp, agromanagement)





We can then run the simulation and show some final results such as the anthesis and
harvest dates (DOA, DOH), total biomass (TAGP) and maximum LAI (LAIMAX).
Next, we retrieve the time series of daily simulation output using the get_output()
method on the WOFOST object:

>>> wofsim.run_till_terminate()
>>> output = wofsim.get_output()
>>> len(output)
294





As the output is returned as a list of dictionaries, we need to unpack these variables
from the list of output:

>>> varnames = ["day", "DVS", "TAGP", "LAI", "SM"]
>>> tmp = {}
>>> for var in varnames:
>>>     tmp[var] = [t[var] for t in output]





Finally, we can generate some figures of WOFOST variables such as the
development (DVS), total biomass (TAGP), leaf area
index (LAI) and root-zone soil moisture (SM) using the MatPlotLib [http://matplotlib.org/] plotting package:

>>> day = tmp.pop("day")
>>> fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(10,8))
>>> for var, ax in zip(["DVS", "TAGP", "LAI", "SM"], axes.flatten()):
>>>     ax.plot_date(day, tmp[var], 'b-')
>>>     ax.set_title(var)
>>> fig.autofmt_xdate()
>>> fig.savefig('sugarbeet.png')





This should generate a figure of the simulation results as shown below. The complete Python
script for this examples can be downloaded here downloads/quickstart_demo2.py

[image: _images/sugarbeet.png]



Running a simulation with PCSE/LINTUL3

The LINTUL model (Light INTerception and UtiLisation) is a simple generic crop model, which simulates dry
matter production as the result of light interception and utilization with a constant light use efficiency.
In PCSE the LINTUL family of models has been implemented including the LINTUL3 model which is used for
simulation of crop production under water-limited and nitrogen-limited conditions.

For the third example, we will use LINTUL3 for simulating spring-wheat in the Netherlands under water-limited
and nitrogen-limited conditions. We will again assume that data files are in the directory
D:\userdata\pcse_examples and all the parameter files needed can be
found by unpacking this zip file downloads/quickstart_part3.zip. Note that this guide is also available
as an IPython notebook: downloads/running_LINTUL3.ipynb.

First we will import the necessary modules and define the data directory. We also assume that you have the
matplotlib [http://matplotlib.org/], `pandas`_ and PyYAML [http://pyyaml.org/wiki/PyYAML] packages installed on your system.:

>>> import os
>>> import pcse
>>> import matplotlib.pyplot as plt
>>> import pandas as pd
>>> import yaml
>>> data_dir = r'D:\userdata\pcse_examples'





Similar to the previous example, for running the PCSE/LINTUL3 model we need to define the tree types of inputs
(parameters, weather data and agromanagement).


Reading model parameters

Model parameters can be easily read from the input files using the PCSEFileReader as we have seen
in the previous example:

>>> from pcse.fileinput import PCSEFileReader
>>> crop = PCSEFileReader(os.path.join(data_dir, "lintul3_springwheat.crop"))
>>> soil = PCSEFileReader(os.path.join(data_dir, "lintul3_springwheat.soil"))
>>> site = PCSEFileReader(os.path.join(data_dir, "lintul3_springwheat.site"))





However, PCSE models expect a single set of parameters and therefore they need to be combined using the
ParameterProvider:

>>> from pcse.base import ParameterProvider
>>> parameterprovider = ParameterProvider(soildata=soil, cropdata=crop, sitedata=site)







Reading weather data

For reading weather data we will use the ExcelWeatherDataProvider. This WeatherDataProvider uses nearly the same
file format as is used for the CABO weather files but stores its data in an MicroSoft Excel file which makes the
weather files easier to create and update:

>>> from pcse.fileinput import ExcelWeatherDataProvider
>>> weatherdataprovider = ExcelWeatherDataProvider(os.path.join(data_dir, "nl1.xlsx"))
>>> print(weatherdataprovider)
Weather data provided by: ExcelWeatherDataProvider
--------Description---------
Weather data for:
Country: Netherlands
Station: Wageningen, Location Haarweg
Description: Observed data from Station Haarweg in Wageningen
Source: Meteorology and Air Quality Group, Wageningen University
Contact: Peter Uithol
----Site characteristics----
Elevation:    7.0
Latitude:  51.970
Longitude:  5.670
Data available for 2004-01-02 - 2008-12-31
Number of missing days: 32







Defining agromanagement

Defining agromanagement needs a bit more explanation because agromanagement is a relatively
complex piece of PCSE. The agromanagement definition for PCSE is written in a format called YAML [http://yaml.org/] and
for the current example looks like this:

Version: 1.0.0
AgroManagement:
- 2006-01-01:
    CropCalendar:
        crop_name: wheat
        variety_name: spring-wheat
        crop_start_date: 2006-03-31
        crop_start_type: emergence
        crop_end_date: 2006-08-20
        crop_end_type: earliest
        max_duration: 300
    TimedEvents:
    -   event_signal: apply_n
        name:  Nitrogen application table
        comment: All nitrogen amounts in g N m-2
        events_table:
        - 2006-04-10: {amount: 10, recovery: 0.7}
        - 2006-05-05: {amount:  5, recovery: 0.7}
    StateEvents: null





The agromanagement definition starts with Version: indicating the version number of the agromanagement file
while the actual definition starts after the label AgroManagement:. Next a date must be provided which sets the
start date of the campaign (and the start date of the simulation). Each campaign is defined by zero or one
CropCalendars and zero or more TimedEvents and/or StateEvents. The CropCalendar defines the crop name,
variety_name, date of sowing, date of harvesting, etc. while the Timed/StateEvents define actions that are
either connected to a date or to a model state.

In the current example, the campaign starts on 2006-01-01, there is a crop calendar for spring-wheat starting on
2006-03-31 with a harvest date of 2006-08-20 or earlier if the crop reaches maturity before this date.
Next there are timed events defined for applying N fertilizer at 2006-04-10 and 2006-05-05. The current example
has no state events. For a thorough description of all possibilities see the section on AgroManagement in the
Reference Guide (Chapter 3).

Loading the agromanagement definition must by done with the YAMLAgroManagementReader:

>>> from pcse.fileinput import YAMLAgroManagementReader
>>> agromanagement = YAMLAgroManagementReader(os.path.join(data_dir, "lintul3_springwheat.amgt"))
>>> print(agromanagement)
!!python/object/new:pcse.fileinput.yaml_agro_loader.YAMLAgroManagementReader
listitems:
- 2006-01-01:
    CropCalendar:
      crop_end_date: 2006-10-20
      crop_end_type: earliest
      crop_name: wheat
      variety_name: spring-wheat
      crop_start_date: 2006-03-31
      crop_start_type: emergence
      max_duration: 300
    StateEvents: null
    TimedEvents:
    - comment: All nitrogen amounts in g N m-2
      event_signal: apply_n
      events_table:
      - 2006-04-10:
          amount: 10
          recovery: 0.7
      - 2006-05-05:
          amount: 5
          recovery: 0.7
      name: Nitrogen application table







Starting and running the LINTUL3 model

We have now all parameters, weather data and agromanagement information available to start the LINTUL3 model:

>>> from pcse.models import LINTUL3
>>> lintul3 = LINTUL3(parameterprovider, weatherdataprovider, agromanagement)
>>> lintul3.run_till_terminate()





Next, we can easily get the output from the model using the get_output() method and turn it into a pandas DataFrame:

>>> output = lintul3.get_output()
>>> df = pd.DataFrame(output).set_index("day")
>>> df.tail()
                 DVS       LAI     NUPTT       TAGBM     TGROWTH  TIRRIG  \
day
2006-07-28  1.931748  0.384372  4.705356  560.213626  626.053663       0
2006-07-29  1.953592  0.368403  4.705356  560.213626  626.053663       0
2006-07-30  1.974029  0.353715  4.705356  560.213626  626.053663       0
2006-07-31  1.995291  0.339133  4.705356  560.213626  626.053663       0
2006-08-01  2.014272  0.326169  4.705356  560.213626  626.053663       0

               TNSOIL  TRAIN  TRAN  TRANRF  TRUNOF      TTRAN        WC  \
day
2006-07-28  11.794644  375.4     0       0       0  71.142104  0.198576
2006-07-29  11.794644  376.3     0       0       0  71.142104  0.197346
2006-07-30  11.794644  376.3     0       0       0  71.142104  0.196293
2006-07-31  11.794644  381.6     0       0       0  71.142104  0.198484
2006-08-01  11.794644  381.7     0       0       0  71.142104  0.197384

                 WLVD       WLVG        WRT         WSO         WST
day
2006-07-28  88.548865  17.687197  16.649830  184.991591  268.985974
2006-07-29  89.284828  16.951234  16.150335  184.991591  268.985974
2006-07-30  89.962276  16.273785  15.665825  184.991591  268.985974
2006-07-31  90.635216  15.600845  15.195850  184.991591  268.985974
2006-08-01  91.233828  15.002234  14.739974  184.991591  268.985974





Finally, we can visualize the results from the pandas DataFrame with a few commands if your
environment supports plotting:

>>> fig, axes = plt.subplots(nrows=9, ncols=2, figsize=(16,40))
>>> for key, axis in zip(df.columns, axes.flatten()):
>>>     df[key].plot(ax=axis, title=key)
>>> fig.autofmt_xdate()
>>> fig.savefig(os.path.join(data_dir, "lintul3_springwheat.png"))





[image: _images/lintul3_springwheat.png]




Advanced topics

Many more examples plus demonstrations of advanced topics are available as Jupyter
notebooks at https://github.com/ajwdewit/pcse_notebooks





            

          

      

      

    

  

    
      
          
            
  
Reference Guide


An overview of PCSE

The Python Crop Simulation Environment builds on the heritage
provided by the earlier approaches developed in Wageningen,
notably the Fortran Simulation Environment. The FSE manual [http://edepot.wur.nl/35555]
(van Kraalingen, 1995) provides a very good overview on the principles of Euler integration
and its application to crop simulation models. Therefore, we will not discuss this in detail
here.

Nevertheless, PCSE also tries to improve on these approaches
by separating the simulation logic into a number of
distinct components that play a role in the implementation of (crop)
simulation models:



	The dynamic part of the simulation is taken care of by a
dedicated simulation Engine which handles the initialization,
the ordering of rate/state updates for the soil and plant
modules as well as keeping track of time, retrieving weather data and
calling the agromanager module.


	Solving the differential equations for soil/plant system and updating
the model state is deferred to SimulationObjects that
implement (bio)physical processes such as phenological development
or CO2 assimilation.


	An AgroManager module is included which takes care of
signalling agricultural management actions such as sowing, harvesting,
irrigation, etc.


	Communication between PCSE components is implemented by either exporting
variables into a shared state object or by implementing signals that can be
broadcasted and received by any PCSE object.


	Several tools are available for providing weather data and
reading parameter values from files or databases.







Next, an overview of the different components in PCSE will be provided.



The Engine

The PCSE Engine provides the environment where the simulation takes place.
The engine takes care of reading the model configuration, initializing model
components, driving the simulation
forward by calling the SimulationObjects, calling the agromanagement
unit, keeping track of time, providing the weather data needed and
storing the model variables during the simulation for later output.
The Engine itself is generic and can be used for any model that is defined
in PCSE. The overall structure of the engine can be found in the figure below
which shows the different elements that are called by the Engine.


[image: _images/PCSE_Engine_structure.png]


Continuous simulation in PCSE

To implement continuous simulation, the engine uses the same approach as
FSE: Euler integration with a fixed time step of one day.  The following
figure shows the principle of continuous simulation
and the execution order of various steps.


[image: _images/continuous_simulation.png]

Order of calculations for continuous simulation using Euler integration
(after Van Kraalingen, 1995).



The steps in the process cycle that are shown in the figure above are
implemented in the simulation Engine which is completely separated
from the model logic itself. Moreover, it demonstrates that before
the simulation can start the engine has to be initialized which involves
several steps:


	The model configuration must be loaded;


	The AgroManager module must be initialized and called to determine
the first and last of the simulation sequence;


	The timer must be initialized with the first and last day of the
simulation sequence;


	The soil component specified in the model configuration must be
initialized.


	The weather variables must be retrieved for the starting day;


	The AgroManager must be called to trigger any management events that
are scheduled for the starting day.


	The initial rates of change based on the initial states and driving
variables must be calculated;


	Finally, output can be collected to save the initial states and rates of
the simulation.




The next cycle in the simulation will now start with an update of the timer to
the next time step (e.g. day). Next, the rates of change of
the previous day will be integrated onto the state variables and the driving
variables for the current day will be retrieved. Finally, the rates of change
will be recalculated based on the new driving variables and updated model
states and so forth.

The simulation loop will terminate when some finish condition has been reached.
Usually, the AgroManager module will encounter the end of the agricultural
campaign and will broadcast a terminate signal that terminates the entire simulation.



Input needed by the Engine

To start the Engine four inputs are needed:


	A weather data provider that provides the Engine with the daily values
of weather variables. See the section on Weather data providers for an
overview of the different options for providing weather data.


	A set of parameters that is needed to parameterize the SimulationObjects
that simulate the soil and crop processes. Model parameters can be retrieved
from different sources like files or databases. PCSE uses three sets of model
parameters: crop parameters, soil parameters and site parameters. The latter
present an ancillary set of parameters that are not related to the soil or
the crop. The atmospheric CO2 concentration is a typical example of a site
parameter. Despite having three sets of parameters, all parameters are
encapsulated using a ParameterProvider
that provides a uniform interface to access the different parameter sets.
See the section on Data providers for parameter values for an overview.


	Agromanagement information that is needed to schedule agromanagement
actions that are taking place during the simulation. See the sections
on The AgroManager and Data providers for agromanagement for a
detailed overview.


	A configuration file that tells the Engine the details of the simulation
such as the components to use for the simulation of the crop, the soil and
the agromanagement. Moreover, the results that should be stored as final and
intermediate outputs and some other details.






Engine configuration files

The engine needs a configuration file that specifies which components should
be used for simulation and additional information. This is most easily
explained by an example such as the configuration file for the WOFOST 7.2 model
for potential crop production:

# -*- coding: utf-8 -*-
# Copyright (c) 2004-2021 Wageningen Environmental Research
# Allard de Wit (allard.dewit@wur.nl), August 2021
"""PCSE configuration file for WOFOST 7.2 Potential Production simulation

This configuration file defines the soil and crop components that
should be used for potential production simulation.
"""

from pcse.soil.classic_waterbalance import WaterbalancePP
from pcse.crop.wofost7 import Wofost
from pcse.agromanager import AgroManager

# Module to be used for water balance
SOIL = WaterbalancePP

# Module to be used for the crop simulation itself
CROP = Wofost

# Module to use for AgroManagement actions
AGROMANAGEMENT = AgroManager

# variables to save at OUTPUT signals
# Set to an empty list if you do not want any OUTPUT
OUTPUT_VARS = ["DVS","LAI","TAGP", "TWSO", "TWLV", "TWST",
               "TWRT", "TRA", "RD", "SM", "WWLOW"]
# interval for OUTPUT signals, either "daily"|"dekadal"|"monthly"|"weekly"
# For daily output you change the number of days between successive
# outputs using OUTPUT_INTERVAL_DAYS. For dekadal and monthly
# output this is ignored.
OUTPUT_INTERVAL = "daily"
OUTPUT_INTERVAL_DAYS = 1
# Weekday: Monday is 0 and Sunday is 6
OUTPUT_WEEKDAY = 0

# Summary variables to save at CROP_FINISH signals
# Set to an empty list if you do not want any SUMMARY_OUTPUT
SUMMARY_OUTPUT_VARS = ["DVS","LAIMAX","TAGP", "TWSO", "TWLV", "TWST",
                       "TWRT", "CTRAT", "RD", "DOS", "DOE", "DOA",
                       "DOM", "DOH", "DOV", "CEVST"]

# Summary variables to save at TERMINATE signals
# Set to an empty list if you do not want any TERMINAL_OUTPUT
TERMINAL_OUTPUT_VARS = []





As you can see, the configuration file is written in plain python code.
First of all, it defines the placeholders SOIL, CROP and
AGROMANAGEMENT that define the components that should be used for
the simulation of these processes. These placeholders simply point to
the modules that were imported at the start of the configuration file.


Note

Modules in configuration files must be imported using fully qualified
names and relative imports cannot be used.



The second part is for defining the
variables (OUTPUT_VARS) that should be stored during the model run
(during OUTPUT signals) and the details of the regular output interval.
Next, summary output SUMMARY_OUTPUT_VARS can be defined that will be generated at the end
of each crop cycle. Finally, output can be collected at the end of the
entire simulation (TERMINAL_OUTPUT_VARS).


Note

Model configuration files for models that are included in the PCSE package
reside in the ‘conf/’ folder inside the package. When the Engine is started
with the name of a configuration file, it searches this folder to locate the file.
This implies that if you want the start the Engine with your own (modified)
configuration file, you must specify it as an absolute path
otherwise the Engine will not find it.





The relationship between models and the engine

Models are treated together with the Engine, because models are simply
pre-configured Engines. Any model can be started by starting the Engine
with the appropriate configuration file. The only difference is that
models can have methods that deal with specific characteristics of a model.
This kind of functionality cannot be implemented in the Engine because
the model details are not known beforehand.




SimulationObjects

PCSE  uses SimulationObjects to group parts of the crop simulation model
that form a logical entity into separate program code sections. In this
way the crop simulation model is grouped into sections that implement certain
biophysical processes such as phenology, assimilation, respiration, etc.
Simulation objects can be grouped to form components that perform the simulation
of an entire crop or a soil profile.

This approach has several advantages:


	Model code with a certain purpose is grouped together, making it easier
to read, understand and maintain.


	A SimulationObject contains only parameters, rate and state variables
that are needed. In contrast, with monolythic code it is often unclear (at
first glance at least) what biophysical process they belong to.


	Isolation of process implementations creates less dependencies, but more
importantly, dependencies are evident from the code which makes it easier
to modify individual SimulationObjects.


	SimulationObjects can be tested individually by comparing output vs the
expected output (e.g. unit testing).


	SimulationObjects can be exchanged for other objects with the same purpose
but a different biophysical approach. For example, the WOFOST assimilation
approach could be easily replaced by a more simple Light Use Efficiency or
Water Use Efficiency approach, by replacing the SimulationObject that
handles the CO2 assimilation.





Characteristics of SimulationObjects

Each SimulationObject is defined in the same way and has a couple of standard
sections and methods which facilitates understanding and readability.
Each SimulationObject has parameters to define the mathematical relationships,
it has state variables to define the state of the system and it has rate
variables that describe the rate of change from one time step to the next.
Moreover, a SimulationObject may contain other SimulationObjects that
together form a logical structure. Finally, the SimulationObject must implement
separate code sections for initialization, rate calculation and integration
of the rates of change. A finalization step which is called at the end of the simulation
can be added optionally.

The skeleton of a SimulationObject looks like this:

class CropProcess(SimulationObject):

    class Parameters(ParamTemplate):
        PAR1 = Float()
        # more parameters defined here

    class StateVariables(StatesTemplate):
        STATE1 = Float()
        # more state variables defined here

    class RateVariables(RatesTemplate):
        RATE1 = Float()
        # more rate variables defined here

    def initialize(self, day, kiosk, parametervalues):
        """Initializes the SimulationObject with given parametervalues."""
        self.params = self.Parameters(parametervalues)
        self.rates = self.RateVariables(kiosk)
        self.states = self.StateVariables(kiosk, STATE1=0., publish=["STATE1"])

    @prepare_rates
    def calc_rates(self, day, drv):
        """Calculate the rates of change given the current states and driving
        variables (drv)."""

        # simple example of rate calculation using rainfall (drv.RAIN)
        self.rates.RATE1 = self.params.PAR1 * drv.RAIN

    @prepare_states
    def integrate(self, day, delt):
        """Integrate the rates of change on the current state variables
        multiplied by the time-step
        """
        self.states.STATE1 += self.rates.RATE1 * delt

    @prepare_states
    def finalize(self, day):
        """do some final calculations when the simulation is finishing."""





The strict separation of program logic was copied from the Fortran Simulation
Environment (FSE, Rappoldt and Van Kraalingen 1996 [http://edepot.wur.nl/4411]
and Van Kraalingen 1995 [http://edepot.wur.nl/35555]) and
is critical to ensure that the simulation results are correct.
The different calculations types (integration, driving variables and
rate calculations) should be strictly separated. In other words, first all
states should be updated, subsequently all driving variables should be calculated,
after which all rates of change should be calculated. If this rule is not
applied rigorously, some rates may pertain to states at
the current time whereas others will pertain to states from the previous time
step. Compared to the FSE system and the
FORTRAN implementation of WOFOST [https://github.com/ajwdewit/wofost],
the initialize(), calc_rates(), integrate() and finalize() sections
match with the ITASK numbers 1, 2, 3, 4.

A complicating factor that arises when using modular code is how to arrange
the communication between SimulationObjects. For example, the evapotranspiration
SimulationObject will need information about the leaf area index from the
leaf_dynamics SimulationObject to calculate the crop transpiration
values. In PCSE the communication between
SimulationObjects is taken care of by the so-called VariableKiosk. The
metaphore kiosk is used because the SimulationObjects publish
their rate and/or state variables (or a subset) into the kiosk, other
SimulationObjects can subsequently request the variable value from the kiosk
without any knowledge about the SimulationObject that published it.
Therefore, the VariableKiosk is shared by all SimulationObjects and must
be provided when SimulationObjects initialize.

See the section on Exchanging data between model components
for a detailed description of the variable kiosk and other ways to communicate
between model components.



Simulation Parameters

Usually SimulationObjects have one or more parameters which should be defined as a subclass
of the ParamTemplate class.  Although parameters can be specified as part
of the SimulationObject definition directly, subclassing them from ParamTemplate has a few
advantages. First of all, parameters must be initialized and a missing parameter will lead to
an exception being raised with a clear message. Secondly, parameters are initialized as read-only
attributes which cannot be changed during the simulation. So occasionally overwriting a
parameter value is impossible this way.

The model parameters are initialized by the calling the Parameters class definition
and providing a dictionary with key/value pairs to define the parameters.



State/Rate variables

The definitions for state and rate variables share many properties. Definitions of rate and
state variables should be defined as attributes of a class that inherit from
RatesTemplate and StatesTemplate respectively. Names of rate and state variables that
are defined this way must be unique across all model components and a duplicate variable
name somewhere across the model composition will lead to an exception.

Both class instances need the VariableKiosk as its first input parameter which is needed
to register the variables defined. Moreover, variables can be published with the publish
keyword as is done in the example above for STATE1. Publishing a variable means that it
will be available in the VariableKiosk and can be retrieved by other components based on the
name of the variables. The main difference between a rates and
a states class is that the states class requires you to provide the initial value of the
state as a keyword parameter in the call. Failing to provide the initial value will lead
to an exception being raised.

Instances of objects containing rate and state variables are read-only by default. In order
to change the value of a rate or state, the instance must be unlocked. For this purpose
the decorators @prepare_rates and @prepare_states are being placed in front of the calls
to calc_rates() and integrate() which take care of unlocking and locking the states
and rates instances. Using this approach rate variables can only be changed during
the call where the rates are calculated, states variables are read-only at that stage.
Similarly, state variables can only be changed during the state update while the rates
of change are locked. This mechanism ensures that rate/state updates are carried out
in the correct order.

Finally, instances of RatesTemplate have one additional method, called zerofy() while
instances of StatesTemplate have one additional method called touch().
Calling zerofy() is normally done by the Engine and explicitly sets all rates of change
to zero. Calling touch() on a states object is only useful when the states variables
do not need to be updated, but you do want to be sure that any published state variables
will remain available in the VariableKiosk.




The AgroManager

Agromanagement is an intricate part of PCSE which is needed for
simulating the processes that are happening
on agriculture fields. In order for crops to grow, farmers must first plow the
fields and sow the crop. Next, they have to do proper management including
irrigation, weeding, nutrient application, pest control and finally harvesting.
All these actions have to be scheduled at specific dates, connected to certain
crop stages or in dependence of soil and weather conditions. Moreover specific
parameters such as the amount of irrigation or nutrients must be provided as well.

In previous versions of WOFOST, the options for agromanagement were limited to
sowing and harvesting. On the one had this was because agromanagement was often assumed
to be optimal and thus there was little need for detailed agromanagement.
On the other hand, implementing agromanagement is relatively complex because
agromanagement consists of events that are happening once rather than
continuously. As such, it does not fit well in the traditional simulation
cycle, see Continuous simulation in PCSE.

Also from a technical point of view implementing such events through the traditional
function calls for rate calculation and state updates is not attractive. For
example, for indicating a nutrient application event several additional parameters
would have to be passed: e.g. the type of nutrient, the amount and its efficiency.
This has several drawbacks, first of all, only a limited number of SimulationObjects
will actually do something with this information while for all other objects, the
information is of no use. Second, nutrient application will usually happen only once
or twice in the growing cycle. So for a 200-day growing cycle there will be
198 days where the parameters do not carry any information. Nevertheless, they
would still be present in the function call, thereby decreasing the computational
efficiency and the readability of the code. Therefore, PCSE uses a very different
approach for agromanagement events which is based on signals (see Broadcasting signals).


Defining agromanagement in PCSE

Defining the agromanagement in PCSE is not very complicated and first starts with
defining a sequence of campaigns. Campaigns
start on a prescribed calendar date and finalize when the next campaign starts.
Each campaign is characterized by zero or one crop calendar, zero or more timed events and
zero or more state events. The crop calendar specifies the timing of the crop (sowing,
harvesting) while the timed and state events can be used to specify management actions
that are either dependent on time (a specific date) or a certain model state variable
such as crop development stage. Crop calendars and event definitions are only valid
for the campaign in which they are defined.

The data format used for defining the agromanagement in PCSE is called YAML. YAML is a
versatile format optimized for readability by humans while still having the power of XML.
However, the agromanagement definition in PCSE is by no means tied to YAML and can be
read from a database as well.

The structure of the data needed as input for the AgroManager is most easily understood
with an example (below). The example definition consists of three campaigns, the first
starting on 1999-08-01, the second starting on 2000-09-01 and the last campaign starting
on 2001-03-01. The first campaign consists of a crop calendar for winter-wheat starting
with sowing at the given crop_start_date. During the campaign there are timed events for
irrigation at 2000-05-25 and 2000-06-30. Moreover, there are state events for  fertilizer
application (event_signal: apply_npk) given by development stage (DVS) at DVS 0.3, 0.6 and 1.12.

The second campaign has no crop calendar, timed events or state events. This means that
this is a period of bare soil with only the water balance running. The third campaign is
for fodder maize sown at 2001-04-15 with two series of timed events (one for irrigation and
one for N/P/K application) and no state events. The end date of the simulation in this case
will be 2001-11-01 (2001-04-15 + 200 days).

An example of an agromanagement definition file:

AgroManagement:
- 1999-08-01:
    CropCalendar:
        crop_name: wheat
        variety_name: winter-wheat
        crop_start_date: 1999-09-15
        crop_start_type: sowing
        crop_end_date:
        crop_end_type: maturity
        max_duration: 300
    TimedEvents:
    -   event_signal: irrigate
        name:  Timed irrigation events
        comment: All irrigation amounts in cm
        events_table:
        - 2000-05-25: {amount: 3.0, efficiency=0.7}
        - 2000-06-30: {amount: 2.5, efficiency=0.7}
    StateEvents:
    -   event_signal: apply_npk
        event_state: DVS
        zero_condition: rising
        name: DVS-based N/P/K application table
        comment: all fertilizer amounts in kg/ha
        events_table:
        - 0.3: {N_amount : 1, P_amount: 3, K_amount: 4, N_recovery=0.7, P_recovery=0.7, K_recovery=0.7}
        - 0.6: {N_amount: 11, P_amount: 13, K_amount: 14, N_recovery=0.7, P_recovery=0.7, K_recovery=0.7}
        - 1.12: {N_amount: 21, P_amount: 23, K_amount: 24, N_recovery=0.7, P_recovery=0.7, K_recovery=0.7}
- 2000-09-01:
    CropCalendar:
    TimedEvents:
    StateEvents
- 2001-03-01:
    CropCalendar:
        crop_name: maize
        variety_name: fodder-maize
        crop_start_date: 2001-04-15
        crop_start_type: sowing
        crop_end_date:
        crop_end_type: maturity
        max_duration: 200
    TimedEvents:
    -   event_signal: irrigate
        name:  Timed irrigation events
        comment: All irrigation amounts in cm
        events_table:
        - 2001-06-01: {amount: 2.0, efficiency=0.7}
        - 2001-07-21: {amount: 5.0, efficiency=0.7}
        - 2001-08-18: {amount: 3.0, efficiency=0.7}
        - 2001-09-19: {amount: 2.5, efficiency=0.7}
    -   event_signal: apply_npk
        name:  Timed N/P/K application table
        comment: All fertilizer amounts in kg/ha
        events_table:
        - 2001-05-25: {N_amount : 50, P_amount: 25, K_amount: 22, N_recovery=0.7, P_recovery=0.7, K_recovery=0.7}
        - 2001-07-05: {N_amount : 70, P_amount: 35, K_amount: 32, N_recovery=0.7, P_recovery=0.7, K_recovery=0.7}
    StateEvents:







Crop calendars

The crop calendar definition will be passed on to a CropCalendar object which is
responsible for storing, checking, starting and ending the crop cycle during a PCSE simulation.
At each time step the instance of CropCalendar is called
and at the dates defined by its parameters it initiates the appropriate actions:


	sowing/emergence: A crop_start signal is dispatched including the parameters needed to
start the new crop simulation object (crop_name, variety_name, crop_start_type and crop_end_type)


	maturity/harvest: the crop cycle is ended by dispatching a crop_finish signal with the
appropriate parameters.




For a detailed description of a crop calendar see the code documentation on the CropCalendar in the
section on Agromanagement.



Timed events

Timed events are management actions that are occurring on specific dates. As simulations in PCSE run
on daily time steps it is easy to schedule actions on dates. Timed events are characterized by
an event signal, a name and comment that can be used to describe the event and finally an
events table that lists the dates for the events and the parameters that should be passed onward.

Note that when multiple events are connected to the same date, the order in which they trigger is
undetermined.

For a detailed description of a timed events see the code documentation on the TimedEventsDispatcher
in the section on Agromanagement.



State events

State events are management actions that are tied to certain model states. Examples are actions such
as nutrient application that should be executed at certain crop stages, or irrigation application
that should occur only when the soil is dry. PCSE has a flexible definition of state events and an event
can be connected to any variable that is defined within PCSE.

Each state event is defined by an event_signal, an event_state (e.g. the model
state that triggers the event) and a zero condition. Moreover, an optional name and an
optional comment can be provided. Finally the events_table specifies at which model state values
the event occurs. The events_table is a list which provides for each state the parameters that
should be dispatched with the given event_signal.

Managing state events is more complicated than timed events because PCSE cannot determine beforehand at
which time step these events will trigger.
For finding the time step at which a state event occurs PCSE uses the concept of zero-crossing.
This means that a state event is triggered when (model_state - event_state) equals or
crosses zero. The zero_condition defines how this crossing should take place. The value of
zero_condition can be:


	rising: the event is triggered when (model_state - event_state) goes from a negative value towards
zero or a positive value.


	falling: the event is triggered when (model_state - event_state) goes from a positive value towards
zero or a negative value.


	either: the event is triggered when (model_state - event_state) crosses or reaches zero from any
direction.




Note that when multiple events are connected to the same state value, the order in which they trigger is
undetermined.

For a detailed description of a state events see the code documentation on the StateEventsDispatcher
in the section on Agromanagement.



Finding the start and end date of a simulation

The agromanager has the task to find the start and end date of the simulation based on the
agromanagement definition that has been provided to the Engine.
Getting the start date from the agromanagement definition is straightforward as this is
represented by the start date of the first campaign. However,
getting the end date is more complicated because there are several possibilities.
The first option is to explicitly define the end date of the simulation by adding a
‘trailing empty campaign’ to the agromanagement definition.
An example of an agromanagement definition with a ‘trailing empty campaigns’ (YAML format) is
given below. This example will run the simulation until 2001-01-01:

Version: 1.0.0
AgroManagement:
- 1999-08-01:
    CropCalendar:
        crop_name: wheat
        variety_name: winter-wheat
        crop_start_date: 1999-09-15
        crop_start_type: sowing
        crop_end_date:
        crop_end_type: maturity
        max_duration: 300
    TimedEvents:
    StateEvents:
- 2001-01-01:





The second option is that there is no trailing empty campaign and in that case the end date of the simulation
is retrieved from the crop calendar and/or the timed events that are scheduled. In the example below, the
end date will be 2000-08-05 as this is the harvest date and there are no timed events scheduled after this
date:

Version: 1.0.0
AgroManagement:
- 1999-09-01:
    CropCalendar:
        crop_name: wheat
        variety_name: winter-wheat
        crop_start_date: 1999-10-01
        crop_start_type: sowing
        crop_end_date: 2000-08-05
        crop_end_type: harvest
        max_duration: 330
    TimedEvents:
    -   event_signal: irrigate
        name:  Timed irrigation events
        comment: All irrigation amounts in cm
        events_table:
        - 2000-05-01: {amount: 2, efficiency: 0.7}
        - 2000-06-21: {amount: 5, efficiency: 0.7}
        - 2000-07-18: {amount: 3, efficiency: 0.7}
    StateEvents:





In the case that there is no harvest date provided and the crop runs till maturity, the end date from
the crop calendar will be estimated as the crop_start_date plus the max_duration.

Note that in an agromanagement definition where the last campaign contains a definition for state events,
a trailing empty campaign must be provided because otherwise the end date cannot be determined. The
following campaign definition is valid (though silly) but there is no way to determine the end date
of the simulation. Therefore, this definition will lead to an error:

Version: 1.0
AgroManagement:
- 2001-01-01:
    CropCalendar:
    TimedEvents:
    StateEvents:
    -   event_signal: irrigate
        event_state: SM
        zero_condition: falling
        name: irrigation scheduling on volumetric soil moisture content
        comment: all irrigation amounts in cm
        events_table:
        - 0.25: {amount: 2, efficiency: 0.7}








Exchanging data between model components

A complicating factor when dealing with modular code is how to exchange model states or other
data between the different components. PCSE implements two basic methods for exchanging variables:


	The VariableKiosk which is primarily used to exchange state/rate variables between model components and
where updates of the state/rate variables are needed at each cycle in the simulation process.


	The use of signals that can be broadcasted and received by any PCSE object and which is primarily used to
broadcast information as a response to events that are happening during the model simulation.





The VariableKiosk

The VariableKiosk is an essential component in PCSE and it is created when the Engine starts.
Nearly all objects in PCSE receive a reference to the VariableKiosk and it has many functions
which may not be clear or appreciated at first glance.

First of all,
the VariableKiosk registers all state and rate variables which are defined as attributes of
a StateVariables or RateVariables class. By doing so, it also ensures that names are
unique; there cannot be two state/rate variables with the same name within the component hierarchy
of a single Engine. This uniqueness is enforced to avoid name conflicts between components that
would affect the publishing of variables or the retrieval of variables. For example,
engine.get_variable(“LAI”) will retrieve the leaf area index of the crop. However, if there
would be two variables named “LAI” it would be unclear which one is retrieved. It would not
even be guaranteed that it is the same variable between function calls or model runs.

Second, the VariableKiosk takes care of exchanging state and rate variables between model
components. Variables that are published by the RateVariables and StateVariables object will become
available in the VariableKiosk the moment when the variable gets a value assigned.
Within the PCSE internals, published variables have a trigger connected to them that copies their
value into the VariableKiosk. The VariableKiosk should therefore not be regarded as a shared
state object but rather as a cache that contains copies of variable name/value pairs.
Moreover, the updating of variables in the kiosk is protected. Only the
SimulationObject that registers and publishes a variable can change its value in the Kiosk.
All other SimulationObjects can query its value, but cannot alter it. Therefore it is
impossible for two processes to manipulate the same variable through the VariableKiosk.

A potential danger with having copies of variables in the kiosk is that copies do not
reflect the actual value anymore, for example due to a missing state update. In such case
the value of the state is “lagging” in the kiosk which is a potential simulation error.
To avoid such problems, the kiosk regularly ‘flushes’ its content. After a flush, the
variables remain registered in the kiosk, but their values become undefined. The flushing
of variables is taken care of by the engine and is done separately for rate and state
variables. After the update of all states, all rate variables are flushed; when the rate
calculation step is finished, all state variables in the kiosk are flushed. On the one hand,
this procedure helps to enforce that calculations are done in the right order. On the
other hand it also implies that in order to keep a state variable available in the kiosk
its value must be updated with the corresponding rate, even if that rate is zero!

The last important function embodied by the VariableKiosk is as the sender ID of signals
that are broadcasted by objects in PCSE. Each signal that is broadcasted has a sender
ID and zero or more receivers. Each instance of a PCSE simulation object is configured
to listen only to signals that have their own VariableKiosk as sender ID.  Since the
VariableKiosk is unique to each instance of an Engine, this ensures that two engines
that are active in the same PCSE session, will not ‘listen’ to each others signals but
only to their own signals. This principle becomes critical when running ensembles of
models (e.g Engines) where the broadcasting of signals of the various ensemble members
should not interfere between members.

In practice, a user of PCSE hardly needs to deal with the VariableKiosk; variables can
be published by indicating them with the publish=[<var1>,<var2>,…] keyword when
initializing rate/state variables, while retrieving values from the VariableKiosk works
through the normal dictionary look up. For more details on the VariableKiosk see the
description in the Base classes section.



Broadcasting signals

The second mechanism in PCSE for passing around information is by broadcasting signals
as a result of events. This is very similar to the way a user interface toolkit
works and where event handlers are connected to certain events like mouse clicks
or buttons being pressed. Instead, events in PCSE are related to management actions
from the AgroManager, output signals from the timer module, the termination of the
simulation, etc.

Signals in PCSE are defined in the signals module which can be easily imported by
any module that needs access to signals. Signals are simply defined as strings but
any hashable object type would do. Most of the work for dealing with signals is in
setting up a receiver. A receiver is usually a method on a SimulationObject that
will be called when the signal is broadcasted. This method will then be connected
to the signal during the initialization of the object. This is easy to describe
with an example:

mysignal = "My first signal"

class MySimObj(SimulationObject):

    def initialize(self, day, kiosk):
        self._connect_signal(self.handle_mysignal, mysignal)

    def handle_mysignal(self, arg1, arg2):
        print "Value of arg1, arg2: %s, %s" % (arg1, arg2)

    def send_mysignal(self):
        self._send_signal(signal=mysignal, arg2="A", arg1=2.5)





In the example above, the initialize() section connects the handle_mysignal() method to
signals of type mysignal having two arguments arg1 and arg2. When the object is
initialized and the send_mysignal() is called the handler will print out the values
of its two arguments:

>>> from pcse.base import VariableKiosk
>>> from datetime import date
>>> d = date(2000,1,1)
>>> v = VariableKiosk()
>>> obj = MySimObj(d, v)
>>> obj.send_mysignal()
Value of arg1, arg2: 2.5, A
>>>





Note that the methods for receiving signals _connect_signal() and sending signals _send_signal() are
available because of subclassing SimulationObject. Both methods are highly flexible regarding the arguments and
keyword arguments that can be passed on with the signal. For more details have a look at the documentation
in the Signals module and the documentation of the PyDispatcher [http://pydispatcher.sourceforge.net/]
package which is used to provide this functionality.




Data providers in PCSE

PCSE needs to receive inputs on weather, parameter values and agromanagement in order to carry out the
simulation. To obtain the required inputs several data providers have been written that read
these inputs from a variety of sources. Nevertheless, care has been taken to avoid dependencies on a particular
database and file format. As a consequence there is no direct coupling between PCSE and a particular file format
or database. This ensures that a variety of data sources can be used, ranging from simple files, relational
databases and internet resources.


Weather data in PCSE


Required weather variables

To run the crop simulation, the engine needs meteorological variables that
drive the processes that are being simulated. PCSE requires the following daily
meteorological variables:








	Name

	Description

	Unit





	TMAX

	Daily maximum temperature

	\(^{\circ}C\)



	TMIN

	Daily minimum temperature

	\(^{\circ}C\)



	VAP

	Mean daily vapour pressure

	\(hPa\)



	WIND

	Mean daily wind speed at 2 m above ground level

	\(m sec^{-1}\)



	RAIN

	Precipitation (rainfall or water equivalent in case of
snow or hail).

	\(cm day^{-1}\)



	IRRAD

	Daily global radiation

	\(J m^{-2} day^{-1}\)



	SNOWDEPTH

	Depth of snow cover (optional)

	\(cm\)






The snow depth is an optional meteorological variable and is only used for
estimating the impact of frost damage on the crop (if enabled). Snow depth can
also be simulated by the SnowMAUS module if observations are not available
on a daily basis. Furthermore there are some meteorological variables which
are derived from the previous ones:








	Name

	Description

	Unit





	E0

	Penman potential evaporation for a free water surface

	\(cm day^{-1}\)



	ES0

	Penman potential evaporation for a bare soil surface

	\(cm day^{-1}\)



	ET0

	Penman or Penman-Monteith potential evaporation
for a reference crop canopy

	\(cm day^{-1}\)



	TEMP

	Mean daily temperature (TMIN + TMAX)/2

	\(^{\circ}C\)



	DTEMP

	Mean daytime temperature (TEMP + TMAX)/2

	\(^{\circ}C\)



	TMINRA

	The 7-day running average of TMIN

	\(^{\circ}C\)








How weather data is used in PCSE

To provide the simulation Engine with weather data PCSE uses the concept of a
WeatherDataProvider which can retrieve its weather data from various
sources but provides a single interface to the Engine for retrieving the data.
This principle can be most easily explained with an example based on
weather data files provided in the Getting Started section
downloads/quickstart_part3.zip. In this example we will read the weather
data from an Excel file nl1.xlsx using the ExcelWeatherDataProvider:

>>> import pcse
>>> from pcse.fileinput import ExcelWeatherDataProvider
>>> wdp = ExcelWeatherDataProvider('nl1.xlsx')





We can simply print() the weather data provider to get an overview of its contents:

>>> print(wdp)
Weather data provided by: ExcelWeatherDataProvider
--------Description---------
Weather data for:
Country: Netherlands
Station: Wageningen, Location Haarweg
Description: Observed data from Station Haarweg in Wageningen
Source: Meteorology and Air Quality Group, Wageningen University
Contact: Peter Uithol
----Site characteristics----
Elevation:    7.0
Latitude:  51.970
Longitude:  5.670
Data available for 2004-01-02 - 2008-12-31
Number of missing days: 32





Moreover, we can call the weather dataproviders with a date object to retrieve a
WeatherDataContainer for that date:

>>> from datetime import date
>>> day = date(2006,7,3)
>>> wdc = wdp(day)





Again, we can print the WeatherDataContainer to reveal its contents:

>>> print(wdc)
Weather data for 2006-07-03 (DAY)
IRRAD:  29290000.00  J/m2/day
 TMIN:        17.20   Celsius
 TMAX:        29.60   Celsius
  VAP:        12.80       hPa
 RAIN:         0.00    cm/day
   E0:         0.77    cm/day
  ES0:         0.69    cm/day
  ET0:         0.72    cm/day
 WIND:         2.90     m/sec
Latitude  (LAT):    51.97 degr.
Longitude (LON):     5.67 degr.
Elevation (ELEV):    7.0 m.





While individual weather elements can be accessed through the standard dotted python notation:

>>> print(wdc.TMAX)
29.6





Finally, for convenience the WeatherDataProvider can also be called with a string representing a date.
This string can in the format YYYYMMDD or YYYYDDD:

>>> print wdp("20060703")
Weather data for 2006-07-03 (DAY)
IRRAD:  29290000.00  J/m2/day
 TMIN:        17.20   Celsius
 TMAX:        29.60   Celsius
  VAP:        12.80       hPa
 RAIN:         0.00    cm/day
   E0:         0.77    cm/day
  ES0:         0.69    cm/day
  ET0:         0.72    cm/day
 WIND:         2.90     m/sec
Latitude  (LAT):    51.97 degr.
Longitude (LON):     5.67 degr.
Elevation (ELEV):    7.0 m.





or in the format YYYYDDD:

>>> print wdp("2006183")
Weather data for 2006-07-03 (DAY)
IRRAD:  29290000.00  J/m2/day
 TMIN:        17.20   Celsius
 TMAX:        29.60   Celsius
  VAP:        12.80       hPa
 RAIN:         0.00    cm/day
   E0:         0.77    cm/day
  ES0:         0.69    cm/day
  ET0:         0.72    cm/day
 WIND:         2.90     m/sec
Latitude  (LAT):    51.97 degr.
Longitude (LON):     5.67 degr.
Elevation (ELEV):    7.0 m.







Weather data providers available in PCSE

PCSE provides several weather data providers out of the box. First of all, it includes file-based weather data providers
that use an input file on disk to retrieve data. The CABOWeatherDataProvider and
the ExcelWeatherDataProvider use the structure as defined by the
CABO Weather System [http://edepot.wur.nl/43010]. The ExcelWeatherDataProvider has the advantage that data can be stored in an Excel file
which is easier to handle than the ASCII files of the CABOWeatherDataProvider. Furthermore, a weather data provider
is available that uses a simple CSV data format, CSVWeatherDataProvider.

Second, there is a set of WeatherDataProviders that derive the weather data from the database tables
implemented in the different versions of the European Crop Growth Monitoring System [http://marswiki.jrc.ec.europa.eu/agri4castwiki/index.php/Weather_Monitoring] including a
CGMS8 database, a CGMS12 database and
a CGMS14 database.

Finally, there is the global weather data provided by the agroclimatology from the
NASA Power database [http://power.larc.nasa.gov] at a resolution of 1x1 degree. PCSE provides the
NASAPowerWeatherDataProvider which retrieves
the NASA Power data from the internet for a given latitude and longitude.




Data providers for crop parameter values

PCSE has a specific data provider for crop parameters: the YAMLCropDataprovider.
The difference with the generic data providers is that
this data provider can read and store the parameter sets for multiple
crops while the generic data providers only can hold a single set.
This crop data providers is therefore suitable
for running crop rotations with different crop types as the data provider
can switch the active crop.

The most basic use is to call YAMLCropDataProvider with no parameters. It will
than pull the crop parameters from the github repository at
https://github.com/ajwdewit/WOFOST_crop_parameters:

>>> from pcse.fileinput import YAMLCropDataProvider
>>> p = YAMLCropDataProvider()
>>> print(p)
YAMLCropDataProvider - crop and variety not set: no activate crop parameter set!





All crops and varieties have been loaded from the github repository, however no active
crop has been set. Therefore, we can activate a particular crop and variety:

>>> p.set_active_crop('wheat', 'Winter_wheat_101')
>>> print(p)
YAMLCropDataProvider - current active crop 'wheat' with variety 'Winter_wheat_101'
Available crop parameters:
 {'DTSMTB': [0.0, 0.0, 30.0, 30.0, 45.0, 30.0], 'NLAI_NPK': 1.0, 'NRESIDLV': 0.004,
 'KCRIT_FR': 1.0, 'RDRLV_NPK': 0.05, 'TCPT': 10, 'DEPNR': 4.5, 'KMAXRT_FR': 0.5,
 ...
 ...
 'TSUM2': 1194, 'TSUM1': 543, 'TSUMEM': 120}





In practice it is usually not necessary to activate a crop parameter set manually because the AgroManager
can handle this. Defining an agromanagement definition with the proper crop_name and variety_name will
automatically activate the crop/variety during the model simulation:

AgroManagement:
- 1999-08-01:
    CropCalendar:
        crop_name: wheat
        variety_name: Winter_wheat_101
        crop_start_date: 1999-09-15
        crop_start_type: sowing
        crop_end_date:
        crop_end_type: maturity
        max_duration: 300
    TimedEvents:
    StateEvents:





Additionally, it is possible to load YAML parameter files from your local file system:

>>> p = YAMLCropDataProvider(fpath=r"D:\UserData\sources\WOFOST_crop_parameters")
>>> print(p)
YAMLCropDataProvider - crop and variety not set: no activate crop parameter set!





Finally, it is possible to pull data from your fork of my github repository by specifying
the URL to that repository:

>>> p = YAMLCropDataProvider(repository="https://raw.githubusercontent.com/<your_account>/WOFOST_crop_parameters/master/")





Note that this URL should point to the location where the raw files can be found. In case of github, these URLs
start with https://raw.githubusercontent, for other systems (e.g. gitlab) check the manual.

To increase performance of loading parameters, the YAMLCropDataProvider will create a
cache file that can be restored much quicker compared to loading the YAML files.
When reading YAML files from the local file system, care is taken to ensure that the
cache file is re-created when updates to the local YAML are made. However, it should
be stressed that this is not possible when parameters are retrieved from a URL
and there is a risk that parameters are loaded from an outdated cache file. In that
case use force_reload=True to force loading the parameters from the URL.



Generic data providers for parameters

PCSE provides several modules for retrieving parameter values for use in simulation models.
The general concept that is used by all data providers for parameters is that they return a
python dictionary object with the parameter names and values as key/value pairs. This concept
is independent of the source where the parameters come from, either a file, a relational database or
an internet source. It also means that parameters can be easily defined or changed on the command prompt,
which is useful when iterating over loops and changing parameter files at each iteration.
For example when showing the impact of a change in a crop parameter one could easily do:

>>> from pcse.fileinput import CABOFileReader
>>> import numpy as np
>>> cropfile = os.path.join(data_dir, 'sug0601.crop')
>>> cropdata = CABOFileReader(cropfile)
>>> TSUM1_values = np.arange(800, 1200, 25)
>>> for tsum1 in TSUM1_values:
        cropdata["TSUM1"] = tsum1
        # code needed to run the simulation goes here





PCSE provides two file-based data providers for reading parameters. The first one is the
CABOFileReader which reads parameter file in the CABO format that was
used to write parameter files for models in FORTRAN or FST. A more versatile reader is the
PCSEFileReader which uses the python language itself as its syntax.
This also implies that all the python syntax features can be used in PCSE parameter files.

Finally, several data providers exist for retrieving crop, soil and site parameter values from the database
of the Crop Growth Monitoring System including data providers for a
CGMS8, CGMS12 and CGMS14/CGMS18 databases.

As described earlier, PCSE needs parameters to define the soil, the crop and and additional
ancillary class of parameters called ‘site’. Nevertheless, the different modules in PCSE have
different needs, some need access to crop parameters only, but some need to combine parameter
values from different sets. For example, the root dynamics module computes
the maximum root depth as the minimum of the crop maximum root depth (a crop parameter)
and the soil maximum root depth (a soil parameter).

The facilitate accessing different parameters from different parameter sets, all parameters
are combined using a ParameterProvider object which provides unified access to all
available parameters. Moreover, parameters from different sources can be easily combined
in the ParameterProvider given that each parameter set uses the basic key/value pair principles
for accessing names and values:

>>> import os
>>> import sqlalchemy as sa
>>> from pcse.fileinput import CABOFileReader, PCSEFileReader
>>> from pcse.base import ParameterProvider
>>> from pcse.db.pcse import fetch_sitedata
>>> import pcse.settings

# Retrieve crop data from a CABO file
>>> cropfile = os.path.join(data_dir, 'sug0601.crop')
>>> crop = CABOFileReader(cropfile)

# Retrieve soildata from a PCSE file
>>> soilfile = os.path.join(data_dir, 'lintul3_springwheat.soil')
>>> soil = PCSEFileReader(soilfile)

# Retrieve site data from the PCSE demo DB
>>> db_location = os.path.join(pcse.settings.PCSE_USER_HOME, "pcse.db")
>>> db_engine = sa.create_engine("sqlite:///" + db_location)
>>> db_metadata = sa.MetaData(db_engine)
>>> site = fetch_sitedata(db_metadata, grid=31031, year=2000)

# Combine everything into one ParameterProvider object and print some values
>>> parprov = ParameterProvider(sitedata=site, soildata=soil, cropdata=crop)
>>> print(parprov["AMAXTB"]) # maximum leaf assimilation rate
[0.0, 22.5, 1.0, 45.0, 1.13, 45.0, 1.8, 36.0, 2.0, 36.0]
>>> print(parprov["DRATE"])  # maximum soil drainage rate
30.0
>>> print(parprov["WAV"])  # site-specific initial soil water amount
10.0







Data providers for agromanagement

Similar to weather and parameter values, there are several data providers for agromanagement.
The structure of the inputs for agromanagement is more complex compared to parameter values or weather
variables.

The most comprehensive way to define agromanagement in PCSE is to use the YAML structure that was
described in the section above on  defining agromanagement. For reading
this datastructure the YAMLAgroManagementReader module is available
which can be provided directly as input into the Engine.

For reading Agromanagement input from a CGMS database see the sections on the database tools CGMS.
Note that the support for defining agromanagement in CGMS databases is limited to crop calendars only.
The CGMS database has no support for defining state and timed events yet.




Global PCSE settings

PCSE has a number of settings that define some global PCSE behaviour. An example of a global setting is
the PCSE_USER_HOME variable which is used to define the home folder of the user.
The settings are stored in two files: 1) default_settings.py which can be found in the PCSE installation
folder under settings/ and should not be changed. 2) user_settings.py which can be found in the .pcse
folder in the user home directory. Under Windows this is typically c:\users\<username>\.pcse while
under Linux systems this is typically ‘/home/<username>/.pcse’.

Changing the PCSE global settings can be done by editing the file user_settings.py, uncommenting the
entries that should be changed and changing its value. Note that dependencies in the configuration file
should be respected as the default settings and user settings are parsed separately.

Adding PCSE global settings can be done by adding new entries to the user_settings.py file. Note that
settings should be defined as ALL_CAPS. Variable names in the settings file that start with ‘_’ will be
ignored, while any other variable names will generate a warning and be neglected.

If the user settings file is corrupted and PCSE fails to start, then the best option is to delete the
user_settings.py file from the .pcse folder in the user home directory. The next time PCSE starts,
the user_settings.py will be regenerated from the default settings with all settings commented out.

Within PCSE all settings can be easily accessed by importing the settings module:

>>> import pcse.settings
>>> pcse.settings.PCSE_USER_HOME
'C:\\Users\\wit015\\.pcse'
>>> pcse.settings.METEO_CACHE_DIR
'C:\\Users\\wit015\\.pcse\\meteo_cache'









            

          

      

      

    

  

    
      
          
            
  
Code documentation


How to read

The API documentation provides a description of the interface and internals of
all SimulationObjects, AncillaryObjects and utility routines available in the
PCSE source distribution. All SimulationObjects and AncillaryObjects are
described using the same structure:



	A short description of the object


	The positional parameters and keywords specified in the interface.


	A table specifying the simulation parameters needed for the simulation


	A table specifying the state variables of the SimulationObject


	A table specifying the rate variables of the SimulationObject


	Signals sent or received by the SimulationObject


	External dependencies on state/rate variables of other SimulationObjects.


	The exceptions that are raised under which conditions.







One or more of these sections may be excluded when they are not appropriate
for the SimulationObject that is described.

The table specifying the simulation parameters has the following columns:



	The name of the parameter.


	A description of the parameter.


	The type of the parameter. This is provided as a three-character code
with the following interpretation. The first character indicates of the
parameter is a scalar (S) or table (T) parameter. The second and
third
character indicate whether this parameter should be present in the
timerdata ‘Ti’, cropdata ‘Cr’, soildata ‘So’ or
sitedata ‘Si’ dictionary.


	The physical unit of the parameter.







The tables specifying state/rate variables have the following columns:



	The name of the variable.


	A description of the variable.


	Whether the variable is published in the kiosk or not: Y|N


	The physical unit of the variable.







Finally, all public methods of all objects are described as well.



Engine and models

The PCSE Engine provides the environment where SimulationObjects are ‘living’.
The engine takes care of reading the model configuration, initializing model
components (e.g. groups of SimulationObjects), driving the simulation
forward by calling the SimulationObjects, calling the agromanagement
unit, keeping track of time and providing the weather data needed.

Models are treated together with the Engine, because models are simply
pre-configured Engines. Any model can be started by starting the Engine
with the appropriate configuration file. The only difference is that
models can have methods that deal with specific characteristics of a model.
This kind of functionality cannot be implemented in the Engine because
the model details are not known beforehand.


	
class pcse.engine.CGMSEngine(**kwargs)

	Engine to mimic CGMS behaviour.

The original CGMS did not terminate when the crop cycles was finished but instead continued with its
simulation cycle but without altering the crop and soil components. This had the effect that after the
crop cycle finished, all state variables were kept at the same value while the day counter increased.
This behaviour is useful for two reasons:


	CGMS generally produces dekadal output and when a day-of-maturity or day-of-harvest does not coincide
with a dekad boundary the final simulation values remain available and are stored at the next dekad.


	When aggregating spatial simulations with variability in day-of-maturity or day-of-harvest it ensures
that records are available in the database tables. So GroupBy clauses in SQL queries produce the right
results when computing spatial averages.




The difference with the Engine are:


	Crop rotations are not supported


	After a CROP_FINISH signal, the engine will continue, updating the
timer but the soil, crop and agromanagement will not execute their simulation cycles.
As a consequence, all state variables will retain their value.


	TERMINATE signals have no effect.


	CROP_FINISH signals will never remove the CROP SimulationObject.


	run() and run_till_terminate() are not supported, only run_till() is supported.





	
run(days=1)

	Advances the system state with given number of days






	
run_till(rday)

	Runs the system until rday is reached.






	
run_till_terminate()

	Runs the system until a terminate signal is sent.










	
class pcse.engine.Engine(**kwargs)

	Simulation engine for simulating the combined soil/crop system.


	Parameters

	
	parameterprovider – A ParameterProvider object providing model
parameters as key/value pairs. The parameterprovider encapsulates
the different parameter sets for crop, soil and site parameters.


	weatherdataprovider – An instance of a WeatherDataProvider that can
return weather data in a WeatherDataContainer for a given date.


	agromanagement – AgroManagement data. The data format is described
in the section on agronomic management.


	config – A string describing the model configuration file to use.
By only giving a filename PCSE assumes it to be located in the ‘conf/’
folder in the main PCSE folder.
If you want to provide you own configuration file, specify
it as an absolute or a relative path (e.g. with a leading ‘.’)








Engine handles the actual simulation of the combined soil-
crop system. The central part of the  Engine is the soil
water balance which is continuously simulating during the entire run. In
contrast, CropSimulation objects are only initialized after receiving a
“CROP_START” signal from the AgroManagement unit. From that point onward,
the combined soil-crop is simulated including the interactions between
the soil and crop such as root growth and transpiration.

Similarly, the crop simulation is finalized when receiving a “CROP_FINISH”
signal. At that moment the finalize() section on the cropsimulation is
executed. Moreover, the “CROP_FINISH” signal can specify that the
crop simulation object should be deleted from the hierarchy. The latter is
useful for further extensions of PCSE for running crop rotations.

Finally, the entire simulation is terminated when a “TERMINATE” signal is
received. At that point, the finalize() section on the water balance is
executed and the simulation stops.

Signals handled by Engine:


	Engine handles the following signals:
	
	CROP_START: Starts an instance of CropSimulation for simulating crop
growth. See the _on_CROP_START handler for details.


	CROP_FINISH: Runs the finalize() section an instance of 
CropSimulation and optionally deletes the cropsimulation instance.
See the _on_CROP_FINISH handler for details.


	TERMINATE: Runs the finalize() section on the waterbalance module
and terminates the entire simulation.
See the _on_TERMINATE handler for details.


	OUTPUT:  Preserves a copy of the value of selected state/rate 
variables during simulation for later use.
See the _on_OUTPUT handler for details.


	SUMMARY_OUTPUT:  Preserves a copy of the value of selected state/rate
variables for later use. Summary output is usually requested only
at the end of the crop simulation.
See the _on_SUMMARY_OUTPUT handler for details.









	
get_output()

	Returns the variables have have been stored during the simulation.

If no output is stored an empty list is returned. Otherwise, the output is
returned as a list of dictionaries in chronological order. Each dictionary is
a set of stored model variables for a certain date.






	
get_summary_output()

	Returns the summary variables have have been stored during the simulation.






	
get_terminal_output()

	Returns the terminal output variables have have been stored during the simulation.






	
run(days=1)

	Advances the system state with given number of days






	
run_till(rday)

	Runs the system until rday is reached.






	
run_till_terminate()

	Runs the system until a terminate signal is sent.






	
set_variable(varname, value)

	Sets the value of the specified state or rate variable.


	Parameters

	
	varname – Name of the variable to be updated (string).


	value – Value that it should be updated to (float)






	Returns

	a dict containing the increments of the variables
that were updated (new - old). If the call was unsuccessful
in finding the class method (see below) it will return an empty
dict.





Note that ‘setting’ a variable (e.g. updating a model state) is much more
complex than just getting a variable, because often some other
internal variables (checksums, related state variables) must be updated
as well. As there is no generic rule to ‘set’ a variable it is up to
the model designer to implement the appropriate code to do the update.

The implementation of set_variable() works as follows. First it will
recursively search for a class method on the simulationobjects with the
name _set_variable_<varname> (case sensitive). If the method is found,
it will be called by providing the value as input.

So for updating the crop leaf area index (varname ‘LAI’) to value ‘5.0’,
the call will be: set_variable(‘LAI’, 5.0). Internally, this call will
search for a class method _set_variable_LAI which will be executed
with the value ‘5.0’ as input.










	
class pcse.models.ALCEPAS(**kwargs)

	ALCEPAS Onion growth model.






	
class pcse.models.FAO_WRSI(**kwargs)

	Convenience class for computing actual crop water use using the Water Requirements
Satisfaction Index with a (modified) FAO WRSI approach.


	Parameters

	
	parameterprovider – A ParameterProvider instance providing all parameter values


	weatherdataprovider – A WeatherDataProvider object


	agromanagement – Agromanagement data













	
class pcse.models.LINGRA_NWLP_FD(**kwargs)

	




	
class pcse.models.LINGRA_PP(**kwargs)

	




	
class pcse.models.LINGRA_WLP_FD(**kwargs)

	




	
class pcse.models.LINTUL3(**kwargs)

	The LINTUL model (Light INTerception and UtiLisation) is a simple general crop model,
which simulates dry matter production as the result of light interception and utilization
with a constant light use efficiency.

LINTUL3 simulates crop growth under water-limited and nitrogen-limited conditions


	Parameters

	
	parameterprovider – A ParameterProvider object providing model
parameters as key/value pairs. The parameterprovider encapsulates
the different parameter sets for crop, soil and site parameters.


	weatherdataprovider – An instance of a WeatherDataProvider that can
return weather data in a WeatherDataContainer for a given date.


	agromanagement – AgroManagement data. The data format is described
in the section on agronomic management.













	
pcse.models.Wofost71_PP

	alias of Wofost72_PP






	
pcse.models.Wofost71_WLP_FD

	alias of Wofost72_WLP_FD






	
class pcse.models.Wofost72_PP(**kwargs)

	Convenience class for running WOFOST7.2 Potential Production.


	Parameters

	
	parameterprovider – A ParameterProvider instance providing all parameter values


	weatherdataprovider – A WeatherDataProvider object


	agromanagement – Agromanagement data













	
class pcse.models.Wofost72_Phenology(**kwargs)

	Convenience class for running WOFOST7.2 phenology only.


	Parameters

	
	parameterprovider – A ParameterProvider instance providing all parameter values


	weatherdataprovider – A WeatherDataProvider object


	agromanagement – Agromanagement data













	
class pcse.models.Wofost72_WLP_FD(**kwargs)

	Convenience class for running WOFOST7.2 water-limited production.


	Parameters

	
	parameterprovider – A ParameterProvider instance providing all parameter values


	weatherdataprovider – A WeatherDataProvider object


	agromanagement – Agromanagement data













	
class pcse.models.Wofost80_NWLP_FD_beta(**kwargs)

	Convenience class for running WOFOST8.0 nutrient and water-limited production


	Parameters

	
	parameterprovider – A ParameterProvider instance providing all parameter values


	weatherdataprovider – A WeatherDataProvider object


	agromanagement – Agromanagement data













	
class pcse.models.Wofost80_PP_beta(**kwargs)

	Convenience class for running WOFOST8.0 potential production (includes NPK dynamics)


	Parameters

	
	parameterprovider – A ParameterProvider instance providing all parameter values


	weatherdataprovider – A WeatherDataProvider object


	agromanagement – Agromanagement data













	
class pcse.models.Wofost80_WLP_FD_beta(**kwargs)

	Convenience class for running WOFOST8.0 water-limited production (includes NPK dynamics)


	Parameters

	
	parameterprovider – A ParameterProvider instance providing all parameter values


	weatherdataprovider – A WeatherDataProvider object


	agromanagement – Agromanagement data














Agromanagement modules

The routines below implement the agromanagement system in PCSE including crop calendars, rotations,
state and timed events. For reading agromanagement data from a file or a database structure see the sections
on the reading file input and the database tools.


	
class pcse.agromanager.AgroManager(**kwargs)

	Class for continuous AgroManagement actions including crop rotations and events.

See also the documentation for the classes CropCalendar, TimedEventDispatcher and StateEventDispatcher.

The AgroManager takes care of executing agromanagent actions that typically occur on agricultural
fields including planting and harvesting of the crop, as well as management actions such as fertilizer
application, irrigation, mowing and spraying.

The agromanagement during the simulation is implemented as a sequence of campaigns. Campaigns start on a
prescribed calendar date and finalize when the next campaign starts. The simulation ends either explicitly by
provided a trailing empty campaign or by deriving the end date from the crop calendar and timed events in the
last campaign. See also the section below on end_date property.

Each campaign is characterized by zero or one crop calendar, zero or more timed events and zero or more
state events.
The structure of the data needed as input for AgroManager is most easily understood with the example
(in YAML) below. The definition consists of three campaigns, the first starting on 1999-08-01, the second
starting on 2000-09-01 and the last campaign starting on 2001-03-01. The first campaign consists of a crop
calendar for winter-wheat starting with sowing at the given crop_start_date. During the campaign there are
timed events for irrigation at 2000-05-25 and 2000-06-30. Moreover, there are state events for  fertilizer
application (event_signal: apply_npk) given by development stage (DVS) at DVS 0.3, 0.6 and 1.12.

The second campaign has no crop calendar, timed events or state events. This means that this is a period of
bare soil with only the water balance running. The third campaign is for fodder maize sown at 2001-04-15
with two series of timed events (one for irrigation and one for N/P/K application) and no state events.
The end date of the simulation in this case will be 2001-11-01 (2001-04-15 + 200 days).

An example of an agromanagement definition file:

AgroManagement:
- 1999-08-01:
    CropCalendar:
        crop_name: wheat
        variety_name: winter-wheat
        crop_start_date: 1999-09-15
        crop_start_type: sowing
        crop_end_date:
        crop_end_type: maturity
        max_duration: 300
    TimedEvents:
    -   event_signal: irrigate
        name:  Timed irrigation events
        comment: All irrigation amounts in cm
        events_table:
        - 2000-05-25: {irrigation_amount: 3.0}
        - 2000-06-30: {irrigation_amount: 2.5}
    StateEvents:
    -   event_signal: apply_npk
        event_state: DVS
        zero_condition: rising
        name: DVS-based N/P/K application table
        comment: all fertilizer amounts in kg/ha
        events_table:
        - 0.3: {N_amount : 1, P_amount: 3, K_amount: 4}
        - 0.6: {N_amount: 11, P_amount: 13, K_amount: 14}
        - 1.12: {N_amount: 21, P_amount: 23, K_amount: 24}
- 2000-09-01:
    CropCalendar:
    TimedEvents:
    StateEvents
- 2001-03-01:
    CropCalendar:
        crop_name: maize
        variety_name: fodder-maize
        crop_start_date: 2001-04-15
        crop_start_type: sowing
        crop_end_date:
        crop_end_type: maturity
        max_duration: 200
    TimedEvents:
    -   event_signal: irrigate
        name:  Timed irrigation events
        comment: All irrigation amounts in cm
        events_table:
        - 2001-06-01: {irrigation_amount: 2.0}
        - 2001-07-21: {irrigation_amount: 5.0}
        - 2001-08-18: {irrigation_amount: 3.0}
        - 2001-09-19: {irrigation_amount: 2.5}
    -   event_signal: apply_npk
        name:  Timed N/P/K application table
        comment: All fertilizer amounts in kg/ha
        events_table:
        - 2001-05-25: {N_amount : 50, P_amount: 25, K_amount: 22}
        - 2001-07-05: {N_amount : 70, P_amount: 35, K_amount: 32}
    StateEvents:






	
property end_date

	Retrieves the end date of the agromanagement sequence, e.g. the last simulation date.


	Returns

	a date object





Getting the last simulation date is more complicated because there are two options.

1. Adding an explicit trailing empty campaign

The first option is to explicitly define the end date of the simulation by adding a
‘trailing empty campaign’ to the agromanagement definition.
An example of an agromanagement definition with a ‘trailing empty campaigns’ (YAML format) is
given below. This example will run the simulation until 2001-01-01:

Version: 1.0
AgroManagement:
- 1999-08-01:
    CropCalendar:
        crop_name: winter-wheat
        variety_name: winter-wheat
        crop_start_date: 1999-09-15
        crop_start_type: sowing
        crop_end_date:
        crop_end_type: maturity
        max_duration: 300
    TimedEvents:
    StateEvents:
- 2001-01-01:





Note that in configurations where the last campaign contains a definition for state events, a trailing
empty campaign must be provided because the end date cannot be determined. The following campaign
definition will therefore lead to an error:

Version: 1.0
AgroManagement:
- 2001-01-01:
    CropCalendar:
        crop_name: maize
        variety_name: fodder-maize
        crop_start_date: 2001-04-15
        crop_start_type: sowing
        crop_end_date:
        crop_end_type: maturity
        max_duration: 200
    TimedEvents:
    StateEvents:
    -   event_signal: apply_npk
        event_state: DVS
        zero_condition: rising
        name: DVS-based N/P/K application table
        comment: all fertilizer amounts in kg/ha
        events_table:
        - 0.3: {N_amount : 1, P_amount: 3, K_amount: 4}
        - 0.6: {N_amount: 11, P_amount: 13, K_amount: 14}
        - 1.12: {N_amount: 21, P_amount: 23, K_amount: 24}





2. Without an explicit trailing campaign

The second option is that there is no trailing empty campaign and in that case the end date of the simulation
is retrieved from the crop calendar and/or the timed events that are scheduled. In the example below, the
end date will be 2000-08-05 as this is the harvest date and there are no timed events scheduled after this
date:

Version: 1.0
AgroManagement:
- 1999-09-01:
    CropCalendar:
        crop_name: wheat
        variety_name: winter-wheat
        crop_start_date: 1999-10-01
        crop_start_type: sowing
        crop_end_date: 2000-08-05
        crop_end_type: harvest
        max_duration: 330
    TimedEvents:
    -   event_signal: irrigate
        name:  Timed irrigation events
        comment: All irrigation amounts in cm
        events_table:
        - 2000-05-01: {irrigation_amount: 2, efficiency: 0.7}
        - 2000-06-21: {irrigation_amount: 5, efficiency: 0.7}
        - 2000-07-18: {irrigation_amount: 3, efficiency: 0.7}
    StateEvents:





In the case that there is no harvest date provided and the crop runs till maturity, the end date from
the crop calendar will be estimated as the crop_start_date plus the max_duration.






	
initialize(kiosk, agromanagement)

	Initialize the AgroManager.


	Parameters

	
	kiosk – A PCSE variable Kiosk


	agromanagement – the agromanagement definition, see the example above in YAML.













	
property ndays_in_crop_cycle

	Returns the number of days of the current cropping cycle.

Returns zero if no crop cycle is active.






	
property start_date

	Retrieves the start date of the agromanagement sequence, e.g. the first simulation date


	Returns

	a date object














	
class pcse.agromanager.CropCalendar(**kwargs)

	A crop calendar for managing the crop cycle.

A CropCalendar object is responsible for storing, checking, starting and ending
the crop cycle. The crop calendar is initialized by providing the parameters needed
for defining the crop cycle. At each time step the instance of CropCalendar is called
and at dates defined by its parameters it initiates the appropriate actions:


	sowing/emergence: A crop_start signal is dispatched including the parameters needed to
start the new crop simulation object


	maturity/harvest: the crop cycle is ended by dispatching a crop_finish signal with the
appropriate parameters.





	Parameters

	
	kiosk – The PCSE VariableKiosk instance


	crop_name – String identifying the crop


	variety_name – String identifying the variety


	crop_start_date – Start date of the crop simulation


	crop_start_type – Start type of the crop simulation (‘sowing’, ‘emergence’)


	crop_end_date – End date of the crop simulation


	crop_end_type – End type of the crop simulation (‘harvest’, ‘maturity’, ‘earliest’)


	max_duration – Integer describing the maximum duration of the crop cycle






	Returns

	A CropCalendar Instance






	
get_end_date()

	Return the end date of the crop cycle.

This is either given as the harvest date or calculated as
crop_start_date + max_duration


	Returns

	a date object










	
get_start_date()

	Returns the start date of the cycle. This is always self.crop_start_date


	Returns

	the start date










	
validate(campaign_start_date, next_campaign_start_date)

	Validate the crop calendar internally and against the interval for
the agricultural campaign.


	Parameters

	
	campaign_start_date – start date of this campaign


	next_campaign_start_date – start date of the next campaign

















	
class pcse.agromanager.TimedEventsDispatcher(**kwargs)

	Takes care handling events that are connected to a date.

Events are handled by dispatching a signal (taken from the signals module)
and providing the relevant parameters with the signal. TimedEvents can be
most easily understood when looking at the definition in the agromanagement
file. The following section (in YAML) provides the definition of two instances
of TimedEventsDispatchers:

TimedEvents:
-   event_signal: irrigate
    name:  Timed irrigation events
    comment: All irrigation amounts in mm
    events_table:
    - 2000-01-01: {irrigation_amount: 20}
    - 2000-01-21: {irrigation_amount: 50}
    - 2000-03-18: {irrigation_amount: 30}
    - 2000-03-19: {irrigation_amount: 25}
-   event_signal: apply_npk
    name:  Timed N/P/K application table
    comment: All fertilizer amounts in kg/ha
    events_table:
    - 2000-01-10: {N_amount : 10, P_amount: 5, K_amount: 2}
    - 2000-01-31: {N_amount : 30, P_amount: 15, K_amount: 12}
    - 2000-03-25: {N_amount : 50, P_amount: 25, K_amount: 22}
    - 2000-04-05: {N_amount : 70, P_amount: 35, K_amount: 32}





Each TimedEventDispatcher is defined by an event_signal, an optional name,
an optional comment and the events_table. The events_table is list which provides
for each date the parameters that should be dispatched with the given
event_signal.


	
get_end_date()

	Returns the last date for which a timed event is given






	
validate(campaign_start_date, next_campaign_start_date)

	Validates the timed events given the campaign window


	Parameters

	
	campaign_start_date – Start date of the campaign


	next_campaign_start_date – Start date of the next campaign, can be None

















	
class pcse.agromanager.StateEventsDispatcher(**kwargs)

	Takes care handling events that are connected to a model state variable.

Events are handled by dispatching a signal (taken from the signals module)
and providing the relevant parameters with the signal. StateEvents can be
most easily understood when looking at the definition in the agromanagement
file. The following section (in YAML) provides the definition of two instances
of StateEventsDispatchers:

StateEvents:
-   event_signal: apply_npk
    event_state: DVS
    zero_condition: rising
    name: DVS-based N/P/K application table
    comment: all fertilizer amounts in kg/ha
    events_table:
    - 0.3: {N_amount : 1, P_amount: 3, K_amount: 4}
    - 0.6: {N_amount: 11, P_amount: 13, K_amount: 14}
    - 1.12: {N_amount: 21, P_amount: 23, K_amount: 24}
-   event_signal: irrigate
    event_state: SM
    zero_condition: falling
    name: Soil moisture driven irrigation scheduling
    comment: all irrigation amounts in cm of water
    events_table:
    - 0.15: {irrigation_amount: 20}





Each StateEventDispatcher is defined by an event_signal, an event_state (e.g. the model
state that triggers the event) and a zero condition. Moreover, an optional name and an
optional comment can be provided. Finally the events_table specifies at which model state values
the event occurs. The events_table is a list which provides for each state the parameters that
should be dispatched with the given event_signal.

For finding the time step at which a state event occurs PCSE uses the concept of zero-crossing.
This means that a state event is triggered when (model_state - event_state) equals or
crosses zero. The zero_condition defines how this crossing should take place. The value of zero_condition
can be:


	
	rising: the event is triggered when (model_state - event_state) goes from a negative value towards
	zero or a positive value.







	
	falling: the event is triggered when (model_state - event_state) goes from a positive value towards
	zero or a negative value.







	
	either: the event is triggered when (model_state - event_state) crosses or reaches zero from any
	direction.









The impact of the zero_condition can be illustrated using the example definitions above.
The development stage of the crop (DVS) only increases from 0 at emergence to 2 at maturity. A StateEvent
set on the DVS (first example) will therefore logically have a zero_condition ‘rising’ although ‘either’
could be used as well. A DVS-based event will not occur with zero_condition set to ‘falling’ as the value
of DVS will not decrease.

The soil moisture (SM) however can both increase and decrease. A StateEvent for applying irrigation (second
example) will therefore be specified with a zero_condition ‘falling’ because the event must be triggered
when the soil moisture level reaches or crosses the minimum level specified by the events_table. Note that
if we set the zero_condition to ‘either’ the event would probably occur again the next time-step because
the irrigation amount increase the soil moisture and (model_state - event_state) crosses zero again
but from the other direction.







The Timer


	
class pcse.timer.Timer(**kwargs)

	This class implements a basic timer for use with the WOFOST crop model.

This object implements a simple timer that increments the current time with
a fixed time-step of one day at each call and returns its value. Moreover,
it generates OUTPUT signals in daily, dekadal or monthly time-steps that
can be caught in order to store the state of the simulation for later use.

Initializing the timer:

timer = Timer(start_date, kiosk, final_date, mconf)
CurrentDate = timer()





Signals sent or handled:



	“OUTPUT”: sent when the condition for generating output is True
which depends on the output type and interval.








	
initialize(kiosk, start_date, end_date, mconf)

	
	Parameters

	
	day – Start date of the simulation


	kiosk – Variable kiosk of the PCSE instance


	end_date – Final date of the simulation. For example, this date
represents (START_DATE + MAX_DURATION) for a single cropping season.
This date is not the harvest date because signalling harvest is taken
care of by the AgroManagement module.


	mconf – A ConfigurationLoader object, the timer needs access to the
configuration attributes mconf.OUTPUT_INTERVAL, mconf.OUTPUT_VARS and
mconf.OUTPUT_INTERVAL_DAYS


















The waterbalance


	The PCSE distribution provides several waterbalance modules:
	
	WaterbalancePP which is used for simulation under non-water-limited
production


	WaterbalanceFD which is used for simulation of water-limited production
under conditions of freely draining soils


	The SnowMAUS for simulation the build-up and melting of the snow cover.


	A multi-layer waterbalance implementing simulations for potential
conditions, water-limited free drainage conditions and
water-limited groundwater conditions (in case of shallow ground
water tables). This waterbalance is in a prototype stage and not yet
usable, although the source code is available in PCSE.









	
class pcse.soil.WaterbalancePP(**kwargs)

	Fake waterbalance for simulation under potential production.

Keeps the soil moisture content at field capacity and only accumulates crop transpiration
and soil evaporation rates through the course of the simulation






	
class pcse.soil.WaterbalanceFD(**kwargs)

	Waterbalance for freely draining soils under water-limited production.

The purpose of the soil water balance calculations is to estimate the
daily value of the soil moisture content. The soil moisture content
influences soil moisture uptake and crop transpiration.

The dynamic calculations are carried out in two sections, one for the 
calculation of rates of change per timestep (= 1 day) and one for the
calculation of summation variables and state variables. The water balance
is driven by rainfall, possibly buffered as surface storage, and
evapotranspiration. The processes considered are infiltration, soil water
retention, percolation (here conceived as downward water flow from rooted
zone to second layer), and the loss of water beyond the maximum root zone.

The textural profile of the soil is conceived as homogeneous. Initially the
soil profile consists of two layers, the actually rooted soil and the soil
immediately below the rooted zone until the maximum rooting depth is reached
by roots(soil and crop dependent). The extension of the root zone from the
initial rooting depth to maximum rooting depth is described in Root_Dynamics
class. From the moment that the maximum rooting depth is reached the soil
profile may be described as a one layer system depending if the roots are
able to penetrate the entire profile. If not a non-rooted part remains
at the bottom of the profile.

The class WaterbalanceFD is derived from WATFD.FOR in WOFOST7.1 with the
exception that the depth of the soil is now completely determined by the
maximum soil depth (RDMSOL) and not by the minimum of soil depth and crop
maximum rooting depth (RDMCR).

Simulation parameters:









	Name

	Description

	Type

	Unit





	SMFCF

	Field capacity of the soil

	SSo

	
	






	SM0

	Porosity of the soil

	SSo

	
	






	SMW

	Wilting point of the soil

	SSo

	
	






	CRAIRC

	Soil critical air content (waterlogging)

	SSo

	
	






	SOPE

	maximum percolation rate root zone

	SSo

	\(cm day^{-1}\)



	KSUB

	maximum percolation rate subsoil

	SSo

	\(cm day^{-1}\)



	RDMSOL

	Soil rootable depth

	SSo

	cm



	IFUNRN

	Indicates whether non-infiltrating fraction of
rain is a function of storm size (1)
or not (0)

	SSi

	
	






	SSMAX

	Maximum surface storage

	SSi

	cm



	SSI

	Initial surface storage

	SSi

	cm



	WAV

	Initial amount of water in total soil
profile

	SSi

	cm



	NOTINF

	Maximum fraction of rain not-infiltrating into
the soil

	SSi

	
	






	SMLIM

	Initial maximum moisture content in initial
rooting depth zone.

	SSi

	
	









State variables:









	Name

	Description

	Pbl

	Unit





	SM

	Volumetric moisture content in root zone

	Y

	
	






	SS

	Surface storage (layer of water on surface)

	N

	cm



	SSI

	Initial urface storage

	N

	cm



	W

	Amount of water in root zone

	N

	cm



	WI

	Initial amount of water in the root zone

	N

	cm



	WLOW

	Amount of water in the subsoil (between current
rooting depth and maximum rootable depth)

	N

	cm



	WLOWI

	Initial amount of water in the subsoil

	
	cm



	WWLOW

	Total amount of water in the  soil profile
WWLOW = WLOW + W

	N

	cm



	WTRAT

	Total water lost as transpiration as calculated
by the water balance. This can be different
from the CTRAT variable which only counts
transpiration for a crop cycle.

	N

	cm



	EVST

	Total evaporation from the soil surface

	N

	cm



	EVWT

	Total evaporation from a water surface

	N

	cm



	TSR

	Total surface runoff

	N

	cm



	RAINT

	Total amount of rainfall (eff + non-eff)

	N

	cm



	WDRT

	Amount of water added to root zone by increase
of root growth

	N

	cm



	TOTINF

	Total amount of infiltration

	N

	cm



	TOTIRR

	Total amount of effective irrigation

	N

	cm



	PERCT

	Total amount of water percolating from rooted
zone to subsoil

	N

	cm



	LOSST

	Total amount of water lost to deeper soil

	N

	cm



	DSOS

	Days since oxygen stress, accumulates the number
of consecutive days of oxygen stress

	Y

	
	






	WBALRT

	Checksum for root zone waterbalance. Will be
calculated within finalize(), abs(WBALRT) >
0.0001 will raise a WaterBalanceError

	N

	cm



	WBALTT

	Checksum for total waterbalance. Will be
calculated within finalize(), abs(WBALTT) >
0.0001 will raise a WaterBalanceError

	N

	cm






Rate variables:

External dependencies:









	Name

	Description

	Provided by

	Unit





	TRA

	Crop transpiration rate

	Evapotranspiration

	\(cm day^{-1}\)



	EVSMX

	Maximum evaporation rate
from a soil surface below
the crop canopy

	Evapotranspiration

	\(cm day^{-1}\)



	EVWMX

	Maximum evaporation rate
from a water surface below
the crop canopy

	Evapotranspiration

	\(cm day^{-1}\)



	RD

	Rooting depth

	Root_dynamics

	cm






Exceptions raised:

A WaterbalanceError is raised when the waterbalance is not closing at the
end of the simulation cycle (e.g water has “leaked” away).






	
class pcse.soil.SnowMAUS(**kwargs)

	Simple snow accumulation model for agrometeorological applications.

This is an implementation of the SnowMAUS model which describes the
accumulation and melt of snow due to precipitation, snowmelt and
sublimation. The SnowMAUS model is designed to keep track of the thickness
of the layer of water that is present as snow on the surface, e.g. the
Snow Water Equivalent Depth (state variable SWEDEPTH [cm]). Conversion of 
the SWEDEPTH to the actual snow depth (state variable SNOWDEPTH [cm])
is done by dividing the SWEDEPTH with the snow density in [cm_water/cm_snow].

Snow density is taken as a fixed value despite the fact that the snow
density is known to vary with the type of snowfall, the temperature and
the age of the snow pack. However, more complicated algorithms for snow
density would not be consistent with the simplicy of SnowMAUS.

A drawback of the current implementation is that there is no link to the
water balance yet.

Reference:
M. Trnka, E. Kocmánková, J. Balek, J. Eitzinger, F. Ruget, H. Formayer,
P. Hlavinka, A. Schaumberger, V. Horáková, M. Možný, Z. Žalud,
Simple snow cover model for agrometeorological applications,
Agricultural and Forest Meteorology, Volume 150, Issues 7–8, 15 July 2010,
Pages 1115-1127, ISSN 0168-1923

http://dx.doi.org/10.1016/j.agrformet.2010.04.012

Simulation parameters: (provide in crop, soil and sitedata dictionary)









	Name

	Description

	Type

	Unit





	TMINACCU1

	Upper critical minimum temperature for snow
accumulation.

	SSi

	\(^{\circ}C\)



	TMINACCU2

	Lower critical minimum temperature for snow
accumulation

	SSi

	\(^{\circ}C\)



	TMINCRIT

	Critical minimum temperature for snow melt

	SSi

	\(^{\circ}C\)



	TMAXCRIT

	Critical maximum temperature for snow melt

	SSi

	\(^{\circ}C\)



	RMELT

	Melting rate per day per degree Celcius
above the critical minimum temperature.

	SSi

	\(cm^{\circ}C^{-1} day^{-1}\)



	SCTHRESHOLD

	Snow water equivalent above which the
sublimation is taken into account.

	SSi

	cm



	SNOWDENSITY

	Density of snow

	SSi

	cm/cm



	SWEDEPTHI

	Initial depth of layer of water present as
snow on the soil surface

	SSi

	cm






State variables:









	Name

	Description

	Pbl

	Unit





	SWEDEPTH

	Depth of layer of water present as snow
on the surface

	N

	cm



	SNOWDEPTH

	Depth of snow present on the surface.

	Y

	cm






Rate variables:









	Name

	Description

	Pbl

	Unit





	RSNOWACCUM

	Rate of snow accumulation

	N

	\(cm day^{-1}\)



	RSNOWSUBLIM

	Rate of snow sublimation

	N

	\(cm day^{-1}\)



	RSNOWMELT

	Rate of snow melting

	N

	\(cm day^{-1}\)












Crop simulation processes for WOFOST


Phenology


	
class pcse.crop.phenology.DVS_Phenology(**kwargs)

	Implements the algorithms for phenologic development in WOFOST.

Phenologic development in WOFOST is expresses using a unitless scale which
takes the values 0 at emergence, 1 at Anthesis (flowering) and 2 at
maturity. This type of phenological development is mainly representative
for cereal crops. All other crops that are simulated with WOFOST are
forced into this scheme as well, although this may not be appropriate for
all crops. For example, for potatoes development stage 1 represents the
start of tuber formation rather than flowering.

Phenological development is mainly governed by temperature and can be
modified by the effects of day length and vernalization 
during the period before Anthesis. After Anthesis, only temperature
influences the development rate.

Simulation parameters









	Name

	Description

	Type

	Unit





	TSUMEM

	Temperature sum from sowing to emergence

	SCr

	\(^{\circ}C\) day



	TBASEM

	Base temperature for emergence

	SCr

	\(^{\circ}C\)



	TEFFMX

	Maximum effective temperature for emergence

	SCr

	\(^{\circ}C\)



	TSUM1

	Temperature sum from emergence to anthesis

	SCr

	\(^{\circ}C\) day



	TSUM2

	Temperature sum from anthesis to maturity

	SCr

	\(^{\circ}C\) day



	IDSL

	Switch for phenological development options
temperature only (IDSL=0), including
daylength (IDSL=1) and including
vernalization (IDSL>=2)

	SCr
SCr

	
	






	DLO

	Optimal daylength for phenological
development

	SCr

	hr



	DLC

	Critical daylength for phenological
development

	SCr

	hr



	DVSI

	Initial development stage at emergence.
Usually this is zero, but it can be higher
for crops that are transplanted (e.g. paddy
rice)

	SCr

	
	






	DVSEND

	Final development stage

	SCr

	
	






	DTSMTB

	Daily increase in temperature sum as a
function of daily mean temperature.

	TCr

	\(^{\circ}C\)






State variables









	Name

	Description

	Pbl

	Unit





	DVS

	Development stage

	Y

	
	






	TSUM

	Temperature sum

	N

	\(^{\circ}C\) day



	TSUME

	Temperature sum for emergence

	N

	\(^{\circ}C\) day



	DOS

	Day of sowing

	N

	
	






	DOE

	Day of emergence

	N

	
	






	DOA

	Day of Anthesis

	N

	
	






	DOM

	Day of maturity

	N

	
	






	DOH

	Day of harvest

	N

	
	






	STAGE

	Current phenological stage, can take the
folowing values:
emerging|vegetative|reproductive|mature

	N

	
	









Rate variables









	Name

	Description

	Pbl

	Unit





	DTSUME

	Increase in temperature sum for emergence

	N

	\(^{\circ}C\)



	DTSUM

	Increase in temperature sum for anthesis or
maturity

	N

	\(^{\circ}C\)



	DVR

	Development rate

	Y

	day-1






External dependencies:

None

Signals sent or handled

DVS_Phenology sends the crop_finish signal when maturity is
reached and the end_type is ‘maturity’ or ‘earliest’.






	
class pcse.crop.phenology.Vernalisation(**kwargs)

	Modification of phenological development due to vernalisation.

The vernalization approach here is based on the work of Lenny van Bussel
(2011), which in turn is based on Wang and Engel (1998). The basic
principle is that winter wheat needs a certain number of days with temperatures
within an optimum temperature range to complete its vernalisation
requirement. Until the vernalisation requirement is fulfilled, the crop
development is delayed.

The rate of vernalization (VERNR) is defined by the temperature response
function VERNRTB. Within the optimal temperature range 1 day is added
to the vernalisation state (VERN). The reduction on the phenological
development is calculated from the base and saturated vernalisation
requirements (VERNBASE and VERNSAT). The reduction factor (VERNFAC) is
scaled linearly between VERNBASE and VERNSAT.

A critical development stage (VERNDVS) is used to stop the effect of
vernalisation when this DVS is reached. This is done to improve model
stability in order to avoid that Anthesis is never reached due to a
somewhat too high VERNSAT. Nevertheless, a warning is written to the log
file, if this happens.


	Van Bussel, 2011. From field to globe: Upscaling of crop growth modelling.
Wageningen PhD thesis. http://edepot.wur.nl/180295


	Wang and Engel, 1998. Simulation of phenological development of wheat
crops. Agric. Systems 58:1 pp 1-24




Simulation parameters (provide in cropdata dictionary)









	Name

	Description

	Type

	Unit





	VERNSAT

	Saturated vernalisation requirements

	SCr

	days



	VERNBASE

	Base vernalisation requirements

	SCr

	days



	VERNRTB

	Rate of vernalisation as a function of daily
mean temperature.

	TCr

	
	






	VERNDVS

	Critical development stage after which the
effect of vernalisation is halted

	SCr

	
	









State variables









	Name

	Description

	Pbl

	Unit





	VERN

	Vernalisation state

	N

	days



	DOV

	Day when vernalisation requirements are
fulfilled.

	N

	
	






	ISVERNALISED

	Flag indicated that vernalisation
requirement has been reached

	Y

	
	









Rate variables









	Name

	Description

	Pbl

	Unit





	VERNR

	Rate of vernalisation

	N

	
	






	VERNFAC

	Reduction factor on development rate due to
vernalisation effect.

	Y

	
	









External dependencies:









	Name

	Description

	Provided by

	Unit





	DVS

	Development Stage
Used only to determine if the
critical development stage for
vernalisation (VERNDVS) is
reached.

	Phenology

	
	















Partitioning


	
class pcse.crop.partitioning.DVS_Partitioning(**kwargs)

	Class for assimilate partioning based on development stage (DVS).

DVS_partioning calculates the partitioning of the assimilates to roots,
stems, leaves and storage organs using fixed partitioning tables as a
function of crop development stage. The available assimilates are first
split into below-ground and abovegrond using the values in FRTB. In a
second stage they are split into leaves (FLTB), stems (FSTB) and storage
organs (FOTB).

Since the partitioning fractions are derived from the state variable DVS
they are regarded state variables as well.

Simulation parameters (To be provided in cropdata dictionary):









	Name

	Description

	Type

	Unit





	FRTB

	Partitioning to roots as a function of
development stage.

	TCr

	
	






	FSTB

	Partitioning to stems as a function of
development stage.

	TCr

	
	






	FLTB

	Partitioning to leaves as a function of
development stage.

	TCr

	
	






	FOTB

	Partitioning to storage organs as a function
of development stage.

	TCr

	
	









State variables









	Name

	Description

	Pbl

	Unit





	FR

	Fraction partitioned to roots.

	Y

	
	






	FS

	Fraction partitioned to stems.

	Y

	
	






	FL

	Fraction partitioned to leaves.

	Y

	
	






	FO

	Fraction partitioned to storage orgains

	Y

	
	









Rate variables

None

Signals send or handled

None

External dependencies:









	Name

	Description

	Provided by

	Unit





	DVS

	Crop development stage

	DVS_Phenology

	
	









Exceptions raised

A PartitioningError is raised if the partitioning coefficients to leaves,
stems and storage organs on a given day do not add up to ‘1’.







CO2 Assimilation


	
class pcse.crop.assimilation.WOFOST_Assimilation(**kwargs)

	Class implementing a WOFOST/SUCROS style assimilation routine.

WOFOST calculates the daily gross CO2 assimilation rate of a crop
from the absorbed radiation and the photosynthesis-light response curve
of individual leaves. This response is dependent on temperature and
leaf age. The absorbed radiation is calculated from the total incoming
radiation and the leaf area. Daily gross CO2 assimilation is obtained
by integrating the assimilation rates over the leaf layers and over the
day.

Simulation parameters









	Name

	Description

	Type

	Unit





	AMAXTB

	Max. leaf CO2 assim. rate as a function of
of DVS

	TCr

	kg ha-1hr-1



	EFFTB

	Light use effic. single leaf as a function
of daily mean temperature

	TCr

	kg ha-1hr-1/(J m-2sec-1)



	KDIFTB

	Extinction coefficient for diffuse visible
as function of DVS

	TCr

	
	






	TMPFTB

	Reduction factor of AMAX as function of
daily mean temperature.

	TCr

	
	






	TMNFTB

	Reduction factor of AMAX as function of
daily minimum temperature.

	TCr

	
	









State and rate variables

WOFOST_Assimilation returns the potential gross assimilation rate ‘PGASS’
directly from the __call__() method, but also includes it as a rate variable.


Rate variables:












	Name

	Description

	Pbl

	Unit





	PGASS

	Potential assimilation rate

	N

	kg CH2O ha-1day-1






Signals sent or handled

None

External dependencies:









	Name

	Description

	Provided by

	Unit





	DVS

	Crop development stage

	DVS_Phenology

	
	






	LAI

	Leaf area index

	Leaf_dynamics

	
	















Maintenance respiration


	
class pcse.crop.respiration.WOFOST_Maintenance_Respiration(**kwargs)

	Maintenance respiration in WOFOST

WOFOST calculates the maintenance respiration as proportional to the dry
weights of the plant organs to be maintained, where each plant organ can be
assigned a different maintenance coefficient. Multiplying organ weight
with the maintenance coeffients yields the relative maintenance respiration
(RMRES) which is than corrected for senescence (parameter RFSETB). Finally,
the actual maintenance respiration rate is calculated using the daily mean
temperature, assuming a relative increase for each 10 degrees increase
in temperature as defined by Q10.

Simulation parameters: (To be provided in cropdata dictionary):









	Name

	Description

	Type

	Unit





	Q10

	Relative increase in maintenance repiration
rate with each 10 degrees increase in
temperature

	SCr

	
	






	RMR

	Relative maintenance respiration rate for
roots

	SCr

	kg CH2O kg-1d-1



	RMS

	Relative maintenance respiration rate for
stems

	SCr

	kg CH2O kg-1d-1



	RML

	Relative maintenance respiration rate for
leaves

	SCr

	kg CH2O kg-1d-1



	RMO

	Relative maintenance respiration rate for
storage organs

	SCr

	kg CH2O kg-1d-1






State and rate variables:


	WOFOSTMaintenanceRespiration returns the potential maintenance respiration PMRES
	directly from the __call__() method, but also includes it as a rate variable
within the object.

Rate variables:













	Name

	Description

	Pbl

	Unit





	PMRES

	Potential maintenance respiration rate

	N

	kg CH2O ha-1day-1






Signals send or handled

None

External dependencies:









	Name

	Description

	Provided by

	Unit





	DVS

	Crop development stage

	DVS_Phenology

	
	






	WRT

	Dry weight of living roots

	WOFOST_Root_Dynamics

	kg ha-1



	WST

	Dry weight of living stems

	WOFOST_Stem_Dynamics

	kg ha-1



	WLV

	Dry weight of living leaves

	WOFOST_Leaf_Dynamics

	kg ha-1



	WSO

	Dry weight of living storage organs

	WOFOST_Storage_Organ_Dynamics

	kg ha-1












Evapotranspiration


	
class pcse.crop.evapotranspiration.Evapotranspiration(**kwargs)

	Calculation of potential evaporation (water and soil) rates and actual
crop transpiration rate.

Simulation parameters:









	Name

	Description

	Type

	Unit





	CFET

	Correction factor for potential transpiration
rate.

	SCr

	
	






	DEPNR

	Dependency number for crop sensitivity to
soil moisture stress.

	SCr

	
	






	KDIFTB

	Extinction coefficient for diffuse visible
as function of DVS.

	TCr

	
	






	IOX

	Switch oxygen stress on (1) or off (0)

	SCr

	
	






	IAIRDU

	Switch airducts on (1) or off (0)

	SCr

	
	






	CRAIRC

	Critical air content for root aeration

	SSo

	
	






	SM0

	Soil porosity

	SSo

	
	






	SMW

	Volumetric soil moisture content at wilting
point

	SSo

	
	






	SMCFC

	Volumetric soil moisture content at field
capacity

	SSo

	
	






	SM0

	Soil porosity

	SSo

	
	









State variables

Note that these state variables are only assigned after finalize() has been
run.









	Name

	Description

	Pbl

	Unit





	IDWST

	Nr of days with water stress.

	N

	
	






	IDOST

	Nr of days with oxygen stress.

	N

	
	









Rate variables









	Name

	Description

	Pbl

	Unit





	EVWMX

	Maximum evaporation rate from an open water
surface.

	Y

	cm day-1



	EVSMX

	Maximum evaporation rate from a wet soil surface.

	Y

	cm day-1



	TRAMX

	Maximum transpiration rate from the plant canopy

	Y

	cm day-1



	TRA

	Actual transpiration rate from the plant canopy

	Y

	cm day-1



	IDOS

	Indicates oxygen stress on this day (True|False)

	N

	
	






	IDWS

	Indicates water stress on this day (True|False)

	N

	
	






	RFWS

	Reduction factor for water stress

	N

	
	






	RFOS

	Reduction factor for oxygen stress

	N

	
	






	RFTRA

	Reduction factor for transpiration (wat & ox)

	Y

	
	









Signals send or handled

None

External dependencies:









	Name

	Description

	Provided by

	Unit





	DVS

	Crop development stage

	DVS_Phenology

	
	






	LAI

	Leaf area index

	Leaf_dynamics

	
	






	SM

	Volumetric soil moisture content

	Waterbalance

	
	














	
pcse.crop.evapotranspiration.SWEAF(ET0, DEPNR)

	Calculates the Soil Water Easily Available Fraction (SWEAF).


	Parameters

	
	ET0 – The evapotranpiration from a reference crop.


	DEPNR – The crop dependency number.








The fraction of easily available soil water between field capacity and
wilting point is a function of the potential evapotranspiration rate
(for a closed canopy) in cm/day, ET0, and the crop group number, DEPNR
(from 1 (=drought-sensitive) to 5 (=drought-resistent)). The function
SWEAF describes this relationship given in tabular form by Doorenbos &
Kassam (1979) and by Van Keulen & Wolf (1986; p.108, table 20)
http://edepot.wur.nl/168025.







Leaf dynamics


	
class pcse.crop.leaf_dynamics.WOFOST_Leaf_Dynamics(**kwargs)

	Leaf dynamics for the WOFOST crop model.

Implementation of biomass partitioning to leaves, growth and senenscence
of leaves. WOFOST keeps track of the biomass that has been partitioned to
the leaves for each day (variable LV), which is called a leaf class).
For each leaf class the leaf age (variable ‘LVAGE’) and specific leaf area
(variable SLA) are also registered. Total living leaf biomass is
calculated by summing the biomass values for all leaf classes. Similarly,
leaf area is calculated by summing leaf biomass times specific leaf area
(LV * SLA).

Senescense of the leaves can occur as a result of physiological age,
drought stress or self-shading.

Simulation parameters (provide in cropdata dictionary)









	Name

	Description

	Type

	Unit





	RGRLAI

	Maximum relative increase in LAI.

	SCr

	ha ha-1 d-1



	SPAN

	Life span of leaves growing at 35 Celsius

	SCr

	day



	TBASE

	Lower threshold temp. for ageing of leaves

	SCr

	\(^{\circ}C\)



	PERDL

	Max. relative death rate of leaves due to
water stress

	SCr

	


	TDWI

	Initial total crop dry weight

	SCr

	kg ha-1



	KDIFTB

	Extinction coefficient for diffuse visible
light as function of DVS

	TCr

	


	SLATB

	Specific leaf area as a function of DVS

	TCr

	ha kg-1






State variables









	Name

	Description

	Pbl

	Unit





	LV

	Leaf biomass per leaf class

	N

	kg ha-1



	SLA

	Specific leaf area per leaf class

	N

	ha kg-1



	LVAGE

	Leaf age per leaf class

	N

	day



	LVSUM

	Sum of LV

	N

	kg ha-1



	LAIEM

	LAI at emergence

	N

	
	






	LASUM

	Total leaf area as sum of LV*SLA,
not including stem and pod area

	N
N

	
	






	LAIEXP

	LAI value under theoretical exponential growth

	N

	
	






	LAIMAX

	Maximum LAI reached during growth cycle

	N

	
	






	LAI

	Leaf area index, including stem and pod area

	Y

	
	






	WLV

	Dry weight of living leaves

	Y

	kg ha-1



	DWLV

	Dry weight of dead leaves

	N

	kg ha-1



	TWLV

	Dry weight of total leaves (living + dead)

	Y

	kg ha-1






Rate variables









	Name

	Description

	Pbl

	Unit





	GRLV

	Growth rate leaves

	N

	kg ha-1day-1



	DSLV1

	Death rate leaves due to water stress

	N

	kg ha-1day-1



	DSLV2

	Death rate leaves due to self-shading

	N

	kg ha-1day-1



	DSLV3

	Death rate leaves due to frost kill

	N

	kg ha-1day-1



	DSLV

	Maximum of DLSV1, DSLV2, DSLV3

	N

	kg ha-1day-1



	DALV

	Death rate leaves due to aging.

	N

	kg ha-1day-1



	DRLV

	Death rate leaves as a combination of DSLV and
DALV

	N

	kg ha-1day-1



	SLAT

	Specific leaf area for current time step,
adjusted for source/sink limited leaf expansion
rate.

	N

	ha kg-1



	FYSAGE

	Increase in physiological leaf age

	N

	
	






	GLAIEX

	Sink-limited leaf expansion rate (exponential
curve)

	N

	ha ha-1day-1



	GLASOL

	Source-limited leaf expansion rate (biomass
increase)

	N

	ha ha-1day-1






External dependencies:









	Name

	Description

	Provided by

	Unit





	DVS

	Crop development stage

	DVS_Phenology

	
	






	FL

	Fraction biomass to leaves

	DVS_Partitioning

	
	






	FR

	Fraction biomass to roots

	DVS_Partitioning

	
	






	SAI

	Stem area index

	WOFOST_Stem_Dynamics

	
	






	PAI

	Pod area index

	WOFOST_Storage_Organ_Dynamics

	
	






	TRA

	Transpiration rate

	Evapotranspiration

	cm day-1



	TRAMX

	Maximum transpiration rate

	Evapotranspiration

	cm day-1



	ADMI

	Above-ground dry matter
increase

	CropSimulation

	kg ha-1day-1



	RF_FROST

	Reduction factor frost kill

	FROSTOL

	
	















Root dynamics


	
class pcse.crop.root_dynamics.WOFOST_Root_Dynamics(**kwargs)

	Root biomass dynamics and rooting depth.

Root growth and root biomass dynamics in WOFOST are separate processes,
with the only exception that root growth stops when no more biomass is sent
to the root system.

Root biomass increase results from the assimilates partitioned to
the root system. Root death is defined as the current root biomass
multiplied by a relative death rate (RDRRTB). The latter as a function
of the development stage (DVS).

Increase in root depth is a simple linear expansion over time until the
maximum rooting depth (RDM) is reached.

Simulation parameters









	Name

	Description

	Type

	Unit





	RDI

	Initial rooting depth

	SCr

	cm



	RRI

	Daily increase in rooting depth

	SCr

	cm day-1



	RDMCR

	Maximum rooting depth of the crop

	SCR

	cm



	RDMSOL

	Maximum rooting depth of the soil

	SSo

	cm



	TDWI

	Initial total crop dry weight

	SCr

	kg ha-1



	IAIRDU

	Presence of air ducts in the root (1) or
not (0)

	SCr

	
	






	RDRRTB

	Relative death rate of roots as a function
of development stage

	TCr

	
	









State variables









	Name

	Description

	Pbl

	Unit





	RD

	Current rooting depth

	Y

	cm



	RDM

	Maximum attainable rooting depth at the minimum
of the soil and crop maximum rooting depth

	N

	cm



	WRT

	Weight of living roots

	Y

	kg ha-1



	DWRT

	Weight of dead roots

	N

	kg ha-1



	TWRT

	Total weight of roots

	Y

	kg ha-1






Rate variables









	Name

	Description

	Pbl

	Unit





	RR

	Growth rate root depth

	N

	cm



	GRRT

	Growth rate root biomass

	N

	kg ha-1day-1



	DRRT

	Death rate root biomass

	N

	kg ha-1day-1



	GWRT

	Net change in root biomass

	N

	kg ha-1day-1






Signals send or handled

None

External dependencies:









	Name

	Description

	Provided by

	Unit





	DVS

	Crop development stage

	DVS_Phenology

	
	






	DMI

	Total dry matter
increase

	CropSimulation

	kg ha-1day-1



	FR

	Fraction biomass to roots

	DVS_Partitioning

	
	















Stem dynamics


	
class pcse.crop.stem_dynamics.WOFOST_Stem_Dynamics(**kwargs)

	Implementation of stem biomass dynamics.

Stem biomass increase results from the assimilates partitioned to
the stem system. Stem death is defined as the current stem biomass
multiplied by a relative death rate (RDRSTB). The latter as a function
of the development stage (DVS).

Stems are green elements of the plant canopy and can as such contribute
to the total photosynthetic active area. This is expressed as the Stem
Area Index which is obtained by multiplying stem biomass with the
Specific Stem Area (SSATB), which is a function of DVS.

Simulation parameters:









	Name

	Description

	Type

	Unit





	TDWI

	Initial total crop dry weight

	SCr

	kg ha-1



	RDRSTB

	Relative death rate of stems as a function
of development stage

	TCr

	
	






	SSATB

	Specific Stem Area as a function of
development stage

	TCr

	ha kg-1






State variables









	Name

	Description

	Pbl

	Unit





	SAI

	Stem Area Index

	Y

	
	






	WST

	Weight of living stems

	Y

	kg ha-1



	DWST

	Weight of dead stems

	N

	kg ha-1



	TWST

	Total weight of stems

	Y

	kg ha-1






Rate variables









	Name

	Description

	Pbl

	Unit





	GRST

	Growth rate stem biomass

	N

	kg ha-1day-1



	DRST

	Death rate stem biomass

	N

	kg ha-1day-1



	GWST

	Net change in stem biomass

	N

	kg ha-1day-1






Signals send or handled

None

External dependencies:









	Name

	Description

	Provided by

	Unit





	DVS

	Crop development stage

	DVS_Phenology

	
	






	ADMI

	Above-ground dry matter
increase

	CropSimulation

	kg ha-1day-1



	FR

	Fraction biomass to roots

	DVS_Partitioning

	
	






	FS

	Fraction biomass to stems

	DVS_Partitioning

	
	















Storage organ dynamics


	
class pcse.crop.storage_organ_dynamics.WOFOST_Storage_Organ_Dynamics(**kwargs)

	Implementation of storage organ dynamics.

Storage organs are the most simple component of the plant in WOFOST and
consist of a static pool of biomass. Growth of the storage organs is the
result of assimilate partitioning. Death of storage organs is not
implemented and the corresponding rate variable (DRSO) is always set to
zero.

Pods are green elements of the plant canopy and can as such contribute
to the total photosynthetic active area. This is expressed as the Pod
Area Index which is obtained by multiplying pod biomass with a fixed
Specific Pod Area (SPA).

Simulation parameters









	Name

	Description

	Type

	Unit





	TDWI

	Initial total crop dry weight

	SCr

	kg ha-1



	SPA

	Specific Pod Area

	SCr

	ha kg-1






State variables









	Name

	Description

	Pbl

	Unit





	PAI

	Pod Area Index

	Y

	
	






	WSO

	Weight of living storage organs

	Y

	kg ha-1



	DWSO

	Weight of dead storage organs

	N

	kg ha-1



	TWSO

	Total weight of storage organs

	Y

	kg ha-1






Rate variables









	Name

	Description

	Pbl

	Unit





	GRSO

	Growth rate storage organs

	N

	kg ha-1day-1



	DRSO

	Death rate storage organs

	N

	kg ha-1day-1



	GWSO

	Net change in storage organ biomass

	N

	kg ha-1day-1






Signals send or handled

None

External dependencies









	Name

	Description

	Provided by

	Unit





	ADMI

	Above-ground dry matter
increase

	CropSimulation

	kg ha-1day-1



	FO

	Fraction biomass to storage organs

	DVS_Partitioning

	
	






	FR

	Fraction biomass to roots

	DVS_Partitioning

	
	















N/P/K dynamics


	
class pcse.crop.npk_dynamics.NPK_Crop_Dynamics(**kwargs)

	Implementation of overall NPK crop dynamics.

NPK_Crop_Dynamics implements the overall logic of N/P/K book-keeping within the
crop.

Simulation parameters








	Name

	Description

	Unit





	NMAXLV_TB

	Maximum N concentration in leaves as
function of dvs

	kg N kg-1 dry biomass



	PMAXLV_TB

	As for P

	kg P kg-1 dry biomass



	KMAXLV_TB

	As for K

	kg K kg-1 dry biomass



	NMAXRT_FR

	Maximum N concentration in roots as fraction
of maximum N concentration in leaves

	
	






	PMAXRT_FR

	As for P

	
	






	KMAXRT_FR

	As for K

	
	






	NMAXST_FR

	Maximum N concentration in stems as fraction
of maximum N concentration in leaves

	
	






	KMAXST_FR

	As for K

	
	






	PMAXST_FR

	As for P

	
	






	NRESIDLV

	Residual N fraction in leaves

	kg N kg-1 dry biomass



	PRESIDLV

	Residual P fraction in leaves

	kg P kg-1 dry biomass



	KRESIDLV

	Residual K fraction in leaves

	kg K kg-1 dry biomass



	NRESIDRT

	Residual N fraction in roots

	kg N kg-1 dry biomass



	PRESIDRT

	Residual P fraction in roots

	kg P kg-1 dry biomass



	KRESIDRT

	Residual K fraction in roots

	kg K kg-1 dry biomass



	NRESIDST

	Residual N fraction in stems

	kg N kg-1 dry biomass



	PRESIDST

	Residual P fraction in stems

	kg P kg-1 dry biomass



	KRESIDST

	Residual K fraction in stems

	kg K kg-1 dry biomass






State variables








	Name

	Description

	Unit





	NamountLV

	Actual N amount in living leaves

	kg N ha-1



	PamountLV

	Actual P amount in living leaves

	kg P ha-1



	KamountLV

	Actual K amount in living leaves

	kg K ha-1



	NamountST

	Actual N amount in living stems

	kg N ha-1



	PamountST

	Actual P amount in living stems

	kg P ha-1



	KamountST

	Actual K amount in living stems

	kg K ha-1



	NamountSO

	Actual N amount in living storage organs

	kg N ha-1



	PamountSO

	Actual P amount in living storage organs

	kg P ha-1



	KamountSO

	Actual K amount in living storage organs

	kg K ha-1



	NamountRT

	Actual N amount in living roots

	kg N ha-1



	PamountRT

	Actual P amount in living roots

	kg P ha-1



	KamountRT

	Actual K amount in living roots

	kg K ha-1



	Nuptake_T

	total absorbed N amount

	kg N ha-1



	Puptake_T

	total absorbed P amount

	kg P ha-1



	Kuptake_T

	total absorbed K amount

	kg K ha-1



	Nfix_T

	total biological fixated N amount

	kg N ha-1






Rate variables








	Name

	Description

	Unit





	RNamountLV

	Weight increase (N) in leaves

	kg N ha-1 d-1



	RPamountLV

	Weight increase (P) in leaves

	kg P ha-1 d-1



	RKamountLV

	Weight increase (K) in leaves

	kg K ha-1 d-1



	RNamountST

	Weight increase (N) in stems

	kg N ha-1 d-1



	RPamountST

	Weight increase (P) in stems

	kg P ha-1 d-1



	RKamountST

	Weight increase (K) in stems

	kg K ha-1 d-1



	RNamountRT

	Weight increase (N) in roots

	kg N ha-1 d-1



	RPamountRT

	Weight increase (P) in roots

	kg P ha-1 d-1



	RKamountRT

	Weight increase (K) in roots

	kg K ha-1 d-1



	RNamountSO

	Weight increase (N) in storage organs

	kg N ha-1 d-1



	RPamountSO

	Weight increase (P) in storage organs

	kg P ha-1 d-1



	RKamountSO

	Weight increase (K) in storage organs

	kg K ha-1 d-1



	RNdeathLV

	Rate of N loss in leaves

	kg N ha-1 d-1



	RPdeathLV

	as for P

	kg P ha-1 d-1



	RKdeathLV

	as for K

	kg K ha-1 d-1



	RNdeathST

	Rate of N loss in roots

	kg N ha-1 d-1



	RPdeathST

	as for P

	kg P ha-1 d-1



	RKdeathST

	as for K

	kg K ha-1 d-1



	RNdeathRT

	Rate of N loss in stems

	kg N ha-1 d-1



	RPdeathRT

	as for P

	kg P ha-1 d-1



	RKdeathRT

	as for K

	kg K ha-1 d-1



	RNloss

	N loss due to senescence

	kg N ha-1 d-1



	RPloss

	P loss due to senescence

	kg P ha-1 d-1



	RKloss

	K loss due to senescence

	kg K ha-1 d-1






Signals send or handled

None

External dependencies









	Name

	Description

	Provided by

	Unit





	DVS

	Crop development stage

	DVS_Phenology

	
	






	WLV

	Dry weight of living leaves

	WOFOST_Leaf_Dynamics

	kg ha-1



	WRT

	Dry weight of living roots

	WOFOST_Root_Dynamics

	kg ha-1



	WST

	Dry weight of living stems

	WOFOST_Stem_Dynamics

	kg ha-1



	DRLV

	Death rate of leaves

	WOFOST_Leaf_Dynamics

	kg ha-1day-1



	DRRT

	Death rate of roots

	WOFOST_Root_Dynamics

	kg ha-1day-1



	DRST

	Death rate of stems

	WOFOST_Stem_Dynamics

	kg ha-1day-1











	
class pcse.crop.nutrients.NPK_Demand_Uptake(**kwargs)

	Calculates the crop N/P/K demand and its uptake from the soil.

Crop N/P/K demand is calculated as the difference between the
actual N/P/K concentration (kg N/P/K per kg biomass) in the
vegetative plant organs (leaves, stems and roots) and the maximum
N/P/K concentration for each organ. N/P/K uptake is then estimated
as the minimum of supply from the soil and demand from the crop.

Nitrogen fixation (leguminous plants) is calculated by assuming that a
fixed fraction of the daily N demand is supplied by nitrogen fixation.
The remaining part has to be supplied by the soil.

The N/P/K demand of the storage organs is calculated in a somewhat
different way because it is assumed that the demand from the storage
organs is fulfilled by translocation of N/P/K from the leaves, stems
and roots. So Therefore the uptake of the storage organs is calculated
as the minimum of the translocatable N/P/K (supply) and the demand from
the storage organs. Moreover, there is time coefficient for translocation
which takes into account that there is a delay in the availability of
translocatable N/P/K

Simulation parameters








	Name

	Description

	Unit





	NMAXLV_TB

	Maximum N concentration in leaves as
function of DVS

	kg N kg-1 dry biomass



	PMAXLV_TB

	As for P

	kg P kg-1 dry biomass



	KMAXLV_TB

	As for K

	kg K kg-1 dry biomass



	NMAXRT_FR

	Maximum N concentration in roots as fraction
of maximum N concentration in leaves

	
	






	PMAXRT_FR

	As for P

	
	






	KMAXRT_FR

	As for K

	
	






	NMAXST_FR

	Maximum N concentration in stems as fraction
of maximum N concentration in leaves

	
	






	PMAXST_FR

	As for P

	
	






	KMAXST_FR

	As for K

	
	






	NMAXSO

	Maximum N concentration in storage organs

	kg N kg-1 dry biomass



	PMAXSO

	As for P

	kg P kg-1 dry biomass



	KMAXSO

	As for K

	kg K kg-1 dry biomass



	NCRIT_FR

	Critical N concentration as fraction of
maximum N concentration for vegetative
plant organs as a whole (leaves + stems)

	
	






	PCRIT_FR

	As for P

	
	






	KCRIT_FR

	As for K

	
	






	TCNT

	Time coefficient for N translation to
storage organs

	days



	TCPT

	As for P

	days



	TCKT

	As for K

	days



	NFIX_FR

	fraction of crop nitrogen uptake by
biological fixation

	kg N kg-1 dry biomass



	RNUPTAKEMAX

	Maximum rate of N uptake

	kg N ha-1 d-1



	RPUPTAKEMAX

	Maximum rate of P uptake

	kg N ha-1 d-1



	RKUPTAKEMAX

	Maximum rate of K uptake

	kg N ha-1 d-1






State variables

Rate variables









	Name

	Description

	Pbl

	Unit





	RNuptakeLV

	Rate of N uptake in leaves

	Y

	kg N ha-1 d-1



	RNuptakeST

	Rate of N uptake in stems

	Y

	kg N ha-1 d-1



	RNuptakeRT

	Rate of N uptake in roots

	Y

	kg N ha-1 d-1



	RNuptakeSO

	Rate of N uptake in storage organs

	Y

	kg N ha-1 d-1



	RPuptakeLV

	Rate of P uptake in leaves

	Y

	kg P ha-1 d-1



	RPuptakeST

	Rate of P uptake in stems

	Y

	kg P ha-1 d-1



	RPuptakeRT

	Rate of P uptake in roots

	Y

	kg P ha-1 d-1



	RPuptakeSO

	Rate of P uptake in storage organs

	Y

	kg P ha-1 d-1



	RKuptakeLV

	Rate of K uptake in leaves

	Y

	kg K ha-1 d-1



	RKuptakeST

	Rate of K uptake in stems

	Y

	kg K ha-1 d-1



	RKuptakeRT

	Rate of K uptake in roots

	Y

	kg K ha-1 d-1



	RKuptakeSO

	Rate of K uptake in storage organs

	Y

	kg K ha-1 d-1



	RNuptake

	Total rate of N uptake

	Y

	kg N ha-1 d-1



	RPuptake

	Total rate of P uptake

	Y

	kg P ha-1 d-1



	RKuptake

	Total rate of K uptake

	Y

	kg K ha-1 d-1



	RNfixation

	Rate of N fixation

	Y

	kg N ha-1 d-1



	NdemandLV

	N Demand in living leaves

	N

	kg N ha-1



	NdemandST

	N Demand in living stems

	N

	kg N ha-1



	NdemandRT

	N Demand in living roots

	N

	kg N ha-1



	NdemandSO

	N Demand in storage organs

	N

	kg N ha-1



	PdemandLV

	P Demand in living leaves

	N

	kg P ha-1



	PdemandST

	P Demand in living stems

	N

	kg P ha-1



	PdemandRT

	P Demand in living roots

	N

	kg P ha-1



	PdemandSO

	P Demand in storage organs

	N

	kg P ha-1



	KdemandLV

	K Demand in living leaves

	N

	kg K ha-1



	KdemandST

	K Demand in living stems

	N

	kg K ha-1



	KdemandRT

	K Demand in living roots

	N

	kg K ha-1



	KdemandSO

	K Demand in storage organs

	N

	kg K ha-1



	Ndemand

	Total crop N demand

	N

	kg N ha-1 d-1



	Pdemand

	Total crop P demand

	N

	kg P ha-1 d-1



	Kdemand

	Total crop K demand

	N

	kg K ha-1 d-1






Signals send or handled

None

External dependencies









	Name

	Description

	Provided by

	Unit





	DVS

	Crop development stage

	DVS_Phenology

	
	






	TRA

	Crop transpiration

	Evapotranspiration

	|cm d-1|



	TRAMX

	Potential crop transpiration

	Evapotranspiration

	|cm d-1|



	NAVAIL

	Total available N from soil

	NPK_Soil_Dynamics

	kg ha-1



	PAVAIL

	Total available P from soil

	NPK_Soil_Dynamics

	kg ha-1



	KAVAIL

	Total available K from soil

	NPK_Soil_Dynamics

	kg ha-1



	Ntranslocatable

	Translocatable amount of N from
stems, Leaves and roots

	NPK_Translocation

	kg ha-1



	Ptranslocatable

	As for P

	NPK_Translocation

	kg ha-1



	Ktranslocatable

	As for K

	NPK_Translocation

	kg ha-1











	
class pcse.crop.nutrients.NPK_Stress(**kwargs)

	Implementation of NPK stress calculation through [NPK]nutrition index.

Stress factors are calculated based on the mass concentrations of N/P/K in
the leaf and stem biomass of the plant. For each pool of nutrients, four
concentrations are calculated based on the biomass for leaves and stems:
- the actual concentration based on the actual amount of nutrients


divided by the actual leaf and stem biomass.





	The maximum concentration, being the maximum that the plant can absorb
into its leaves and stems.


	The critical concentration, being the concentration that is needed to
maintain growth rates that are not limited by N/P/K. For P and K, the
critical concentration is usually equal to the maximum concentration.
For N, the critical concentration can be lower than the maximum
concentration. This concentration is sometimes called ‘optimal
concentration’.


	The residual concentration which is the amount that is locked
into the plant structural biomass and cannot be mobilized anymore.




The stress index (SI) is determined as a simple ratio between those
concentrations according to:

\(SI = (C_{a} - C_{r})/(C_{c} - C_{r})\)

with subscript a, r and c being the actual, residual and critical
concentration for the nutrient.
This equation is applied in analogue to N, P and K and results in the
nitrogen nutrition index (NNI), phosphorous nutrition index (PNI) and
Potassium nutrition index (KNI). Next, the NPK index (NPKI) is calculated
as the minimum of NNI, PNI, KNI. Finally, the reduction factor for
assimilation (NPKREF) is calculated using the reduction factor for
light use efficiency (NLUE_NPK).

Simulation parameters








	Name

	Description

	Unit





	NMAXLV_TB

	Maximum N concentration in leaves as
function of DVS

	kg N kg-1 dry biomass



	PMAXLV_TB

	As for P

	kg P kg-1 dry biomass



	KMAXLV_TB

	As for K

	kg K kg-1 dry biomass



	NMAXRT_FR

	Maximum N concentration in roots as fraction
of maximum N concentration in leaves

	
	






	PMAXRT_FR

	As for P

	
	






	KMAXRT_FR

	As for K

	
	






	NMAXST_FR

	Maximum N concentration in stems as fraction
of maximum N concentration in leaves

	
	






	PMAXST_FR

	As for P

	
	






	KMAXST_FR

	As for K

	
	






	NCRIT_FR

	Critical N concentration as fraction of
maximum N concentration for vegetative
plant organs as a whole (leaves + stems)

	
	






	PCRIT_FR

	As for P

	
	






	KCRIT_FR

	As for K

	
	






	NRESIDLV

	Residual N fraction in leaves

	kg N kg-1 dry biomass



	PRESIDLV

	Residual P fraction in leaves

	kg P kg-1 dry biomass



	KRESIDLV

	Residual K fraction in leaves

	kg K kg-1 dry biomass



	NRESIDST

	Residual N fraction in stems

	kg N kg-1 dry biomass



	PRESIDST

	Residual P fraction in stems

	kg P kg-1 dry biomass



	KRESIDST

	Residual K fraction in stems

	kg K kg-1 dry biomass



	NLUE_NPK

	Coefficient for the reduction of RUE due
to nutrient (N-P-K) stress

	
	









Rate variables

The rate variables here are not real rate variables in the sense that they are derived
state variables and do not represent a rate. However, as they are directly used
in the rate variable calculation it is logical to put them here.









	Name

	Description

	Pbl

	Unit





	NNI

	Nitrogen nutrition index

	Y

	
	






	PNI

	Nitrogen nutrition index

	N

	
	






	KNI

	Nitrogen nutrition index

	N

	
	






	NPKI

	Minimum of NNI, PNI, KNI

	Y

	
	






	RFNPK

	Reduction factor for CO2 assimlation
based on NPKI and the parameter NLUE_NPK

	N

	
	









External dependencies:









	Name

	Description

	Provided by

	Unit





	DVS

	Crop development stage

	DVS_Phenology

	
	






	WST

	Dry weight of living stems

	WOFOST_Stem_Dynamics

	kg ha-1



	WLV

	Dry weight of living leaves

	WOFOST_Leaf_Dynamics

	kg ha-1



	NamountLV

	Amount of N in leaves

	NPK_Crop_Dynamics

	kg ha-1



	NamountST

	Amount of N in stems

	NPK_Crop_Dynamics

	kg ha-1



	PamountLV

	Amount of P in leaves

	NPK_Crop_Dynamics

	kg ha-1



	PamountST

	Amount of P in stems

	NPK_Crop_Dynamics

	kg ha-1



	KamountLV

	Amount of K in leaves

	NPK_Crop_Dynamics

	kg ha-1



	KamountST

	Amount of K in stems

	NPK_Crop_Dynamics

	kg ha-1











	
class pcse.crop.nutrients.NPK_Translocation(**kwargs)

	Does the bookkeeping for translocation of N/P/K from the roots, leaves
and stems towards the storage organs of the crop.

First the routine calculates the state of the translocatable amount of N/P/K.
This translocatable amount is defined as the amount of N/P/K above the
residual N/P/K amount calculated as the residual concentration times the
living biomass. The residual amount is locked into the plant structural biomass
and cannot be mobilized anymore. The translocatable amount is calculated for
stems, roots and leaves and published as the state variables
Ntranslocatable, Ptranslocatable and Ktranslocatable.

The overal translocation rate is calculated as the minimum of supply (the
translocatable amount) and demand from the storage organs as calculated in
the component on Demand_Uptake.
The actual rate of N/P/K translocation from the different plant organs is
calculated assuming that the uptake rate is distributed over roots, stems and
leaves in proportion to the translocatable amount for each organ.

Simulation parameters








	Name

	Description

	Unit





	NRESIDLV

	Residual N fraction in leaves

	kg N kg-1 dry biomass



	PRESIDLV

	Residual P fraction in leaves

	kg P kg-1 dry biomass



	KRESIDLV

	Residual K fraction in leaves

	kg K kg-1 dry biomass



	NRESIDST

	Residual N fraction in stems

	kg N kg-1 dry biomass



	PRESIDST

	Residual P fraction in stems

	kg P kg-1 dry biomass



	KRESIDST

	Residual K fraction in stems

	kg K kg-1 dry biomass



	NPK_TRANSLRT_FR

	NPK translocation from roots as a fraction
of resp. total NPK amounts translocated
from leaves and stems

	
	









State variables









	Name

	Description

	Pbl

	Unit





	NtranslocatableLV

	Translocatable N amount in living leaves

	N

	kg N ha-1



	PtranslocatableLV

	Translocatable P amount in living leaves

	N

	kg P ha-1



	KtranslocatableLV

	Translocatable K amount in living leaves

	N

	kg K ha-1



	NtranslocatableST

	Translocatable N amount in living stems

	N

	kg N ha-1



	PtranslocatableST

	Translocatable P amount in living stems

	N

	kg P ha-1



	KtranslocatableST

	Translocatable K amount in living stems

	N

	kg K ha-1



	NtranslocatableRT

	Translocatable N amount in living roots

	N

	kg N ha-1



	PtranslocatableRT

	Translocatable P amount in living roots

	N

	kg P ha-1



	KtranslocatableRT

	Translocatable K amount in living roots

	N

	kg K ha-1



	Ntranslocatable

	Total N amount that can be translocated to the
storage organs

	Y

	[kg N ha-1]



	Ptranslocatable

	Total P amount that can be translocated to the
storage organs

	Y

	[kg P ha-1]



	Ktranslocatable

	Total K amount that can be translocated to the
storage organs

	Y

	[kg K ha-1]






Rate variables









	Name

	Description

	Pbl

	Unit





	RNtranslocationLV

	Weight increase (N) in leaves

	Y

	kg ha-1day-1



	RPtranslocationLV

	Weight increase (P) in leaves

	Y

	kg ha-1day-1



	RKtranslocationLV

	Weight increase (K) in leaves

	Y

	kg ha-1day-1



	RNtranslocationST

	Weight increase (N) in stems

	Y

	kg ha-1day-1



	RPtranslocationST

	Weight increase (P) in stems

	Y

	kg ha-1day-1



	RKtranslocationST

	Weight increase (K) in stems

	Y

	kg ha-1day-1



	RNtranslocationRT

	Weight increase (N) in roots

	Y

	kg ha-1day-1



	RPtranslocationRT

	Weight increase (P) in roots

	Y

	kg ha-1day-1



	RKtranslocationRT

	Weight increase (K) in roots

	Y

	kg ha-1day-1






Signals send or handled

None

External dependencies:









	Name

	Description

	Provided by

	Unit





	DVS

	Crop development stage

	DVS_Phenology

	
	






	WST

	Dry weight of living stems

	WOFOST_Stem_Dynamics

	kg ha-1



	WLV

	Dry weight of living leaves

	WOFOST_Leaf_Dynamics

	kg ha-1



	WRT

	Dry weight of living roots

	WOFOST_Root_Dynamics

	kg ha-1



	NamountLV

	Amount of N in leaves

	NPK_Crop_Dynamics

	kg ha-1



	NamountST

	Amount of N in stems

	NPK_Crop_Dynamics

	kg ha-1



	NamountRT

	Amount of N in roots

	NPK_Crop_Dynamics

	kg ha-1



	PamountLV

	Amount of P in leaves

	NPK_Crop_Dynamics

	kg ha-1



	PamountST

	Amount of P in stems

	NPK_Crop_Dynamics

	kg ha-1



	PamountRT

	Amount of P in roots

	NPK_Crop_Dynamics

	kg ha-1



	KamountLV

	Amount of K in leaves

	NPK_Crop_Dynamics

	kg ha-1



	KamountST

	Amount of K in stems

	NPK_Crop_Dynamics

	kg ha-1



	KamountRT

	Amount of K in roots

	NPK_Crop_Dynamics

	kg ha-1












Abiotic damage


	
class pcse.crop.abioticdamage.FROSTOL(**kwargs)

	Implementation of the FROSTOL model for frost damage in winter-wheat.


	Parameters

	
	day – start date of the simulation


	kiosk – variable kiosk of this PCSE instance


	parvalues – ParameterProvider object providing parameters as
key/value pairs








Simulation parameters









	Name

	Description

	Type

	Unit





	IDSL

	Switch for phenological development options
temperature only (IDSL=0), including
daylength (IDSL=1) and including
vernalization (IDSL>=2). FROSTOL requires
IDSL>=2

	SCr

	
	






	LT50C

	Critical LT50 defined as the lowest LT50
value that the wheat cultivar can obtain

	SCr

	\(^{\circ}C\)



	FROSTOL_H

	Hardening coefficient

	SCr

	\(^{\circ}C^{-1} day^{-1}\)



	FROSTOL_D

	Dehardening coefficient

	SCr

	\(^{\circ}C^{-3} day^{-1}\)



	FROSTOL_S

	Low temperature stress coefficient

	SCr

	\(^{\circ}C^{-1} day^{-1}\)



	FROSTOL_R

	Respiration stress coefficient

	SCr

	day-1



	FROSTOL_SDBASE

	Minimum snow depth for respiration stress

	SCr

	cm



	FROSTOL_SDMAX

	Snow depth with maximum respiration stress.
Larger snow depth does not increase stress
anymore.

	SCr

	cm



	FROSTOL_KILLCF

	Steepness coefficient for logistic kill
function.

	SCr

	
	






	ISNOWSRC

	Use prescribed snow depth from driving
variables (0) or modelled snow depth through
the kiosk (1)

	SSi

	
	









State variables









	Name

	Description

	Pbl

	Unit





	LT50T

	Current LT50 value

	N

	\(^{\circ}C\)



	LT50I

	Initial LT50 value of unhardened crop

	N

	\(^{\circ}C\)



	IDFST

	Total number of days with frost stress

	N

	
	









Rate variables









	Name

	Description

	Pbl

	Unit





	RH

	Rate of hardening

	N

	\(^{\circ}C day^{-1}\)



	RDH_TEMP

	Rate of dehardening due to temperature

	N

	\(^{\circ}C day^{-1}\)



	RDH_RESP

	Rate of dehardening due to respiration stress

	N

	\(^{\circ}C day^{-1}\)



	RDH_TSTR

	Rate of dehardening due to temperature stress

	N

	\(^{\circ}C day^{-1}\)



	IDFS

	Frost stress, yes (1) or no (0). Frost stress is
defined as: RF_FROST > 0

	N

	
	






	RF_FROST

	Reduction factor on leave biomass as a function
of min. crown temperature and LT50T: ranges
from 0 (no damage) to 1 (complete kill).

	Y

	
	






	RF_FROST_T

	Total frost kill through the growing season
is computed as the multiplication of the daily
frost kill events, 0 means no damage, 1 means
total frost kill.

	N

	
	









External dependencies:









	Name

	Description

	Provided by

	Unit





	TEMP_CROWN

	Daily average crown temperature
derived from calling the
crown_temperature module.

	CrownTemperature

	\(^{\circ}C\)



	TMIN_CROWN

	Daily minimum crown temperature
derived from calling the
crown_temperature module.

	CrownTemperature

	\(^{\circ}C\)



	ISVERNALISED

	Boolean reflecting the
vernalisation state of the
crop.

	Vernalisation i.c.m. with
DVS_Phenology module

	
	










	Reference: Anne Kari Bergjord, Helge Bonesmo, Arne Oddvar Skjelvag, 2008.
	Modelling the course of frost tolerance in winter wheat: I. Model
development, European Journal of Agronomy, Volume 28,
Issue 3, April 2008, Pages 321-330.





http://dx.doi.org/10.1016/j.eja.2007.10.002






	
class pcse.crop.abioticdamage.CrownTemperature(**kwargs)

	Implementation of a simple algorithm for estimating the crown temperature
(2cm under the soil surface) under snow.

Is is based on a simple empirical equation which estimates the daily
minimum, maximum and mean crown 
temperature as a function of daily min or max temperature and the relative
snow depth (RSD):

\(RSD = min(15, SD)/15\)

and

\(T^{crown}_{min} = T_{min} * (A + B(1 - RSD)^{2})\)

and

\(T^{crown}_{max} = T_{max} * (A + B(1 - RSD)^{2})\)

and

\(T^{crown}_{avg} = (T^{crown}_{max} + T^{crown}_{min})/2\)

At zero snow depth crown temperature is estimated close the the air
temperature. Increasing snow depth acts as a buffer damping the effect of
low air temperature on the crown temperature. The maximum value of the
snow depth is limited on 15cm. Typical values for A and B are 0.2 and
0.5

Note that the crown temperature is only estimated if drv.TMIN<0, otherwise
the TMIN, TMAX and daily average temperature (TEMP) are returned.


	Parameters

	
	day – day when model is initialized


	kiosk – VariableKiosk of this instance


	parvalues – ParameterProvider object providing parameters as
key/value pairs






	Returns

	a tuple containing minimum, maximum and daily average crown
temperature.





Simulation parameters









	Name

	Description

	Type

	Unit





	ISNOWSRC

	Use prescribed snow depth from driving
variables (0) or modelled snow depth through
the kiosk (1)

	SSi

	
	






	CROWNTMPA

	A parameter in equation for crown temperature

	SSi

	
	






	CROWNTMPB

	B parameter in equation for crown temperature

	SSi

	
	









Rate variables









	Name

	Description

	Pbl

	Unit





	TEMP_CROWN

	Daily average crown temperature

	N

	\(^{\circ}C\)



	TMIN_CROWN

	Daily minimum crown temperature

	N

	\(^{\circ}C\)



	TMAX_CROWN

	Daily maximum crown temperature

	N

	\(^{\circ}C\)






Note that the calculated crown temperatures are not real rate variables as
they do not pertain to rate of change. In fact they are a derived driving
variable. Nevertheless for calculating the frost damage they should
become available during the rate calculation step and by treating them
as rate variables, they can be found by a get_variable() call and thus
be defined in the list of OUTPUT_VARS in the configuration file

External dependencies:









	Name

	Description

	Provided by

	Unit





	SNOWDEPTH

	Depth of snow cover.

	Prescibed by driving
variables or simulated
by snow cover module and
taken from kiosk

	\(cm\)













Crop simulation processes for LINGRA & LINGRA-N

Implementation of the LINGRA grassland simulation model

This module provides an implementation of the LINGRA (LINtul GRAssland)
simulation model for grasslands as described by Schapendonk et al. 1998
(https://doi.org/10.1016/S1161-0301(98)00027-6) for use within the
Python Crop Simulation Environment.


Overall grassland model


	
class pcse.crop.lingra.LINGRA(**kwargs)

	Top level implementation of LINGRA, integrating all components

This class integrates all components from the LINGRA model and includes the
main state variables related to weights of the different biomass pools, the
leaf area, tiller number and leaf length. The integrated components include the
implementations for source/sink limited growth, soil temperature,
evapotranspiration and root dynamics. The latter two are taken from WOFOST in
order to avoid duplication of code.

Compared to the original code from Schapendonk et al. (1998) several improvements
have been made:


	an overall restructuring of the code, removing unneeded variables and renaming
the remaining variables to have more readable names.


	A clearer implementation of sink/source limited growth including the use of
reserves


	the potential leaf elongation rate as calculated by the Sink-limited growth
module is now corrected for actual growth. Thereby avoiding unlimited leaf
growth under water-stressed conditions which led to unrealistic results.




Simulation parameters:








	Name

	Description

	Unit





	LAIinit

	Initial leaf area index

	
	






	TillerNumberinit

	Initial number of tillers

	tillers/m2



	WeightREinit

	Initial weight of reserves

	kg/ha



	WeightRTinit

	Initial weight of roots

	kg/ha



	LAIcrit

	Critical LAI for death due to self-shading

	
	






	RDRbase

	Background relative death rate for roots

	d-1



	RDRShading

	Max relative death rate of leaves due to
self-shading

	d-1



	RDRdrought

	Max relative death rate of leaves due to
drought stress

	d-1



	SLA

	Specific leaf area

	ha/kg



	TempBase

	Base temperature for photosynthesis and
development

	C



	PartitioningRootsTB

	Partitioning fraction to roots as a
function of the reduction factor for
transpiration (RFTRA)

	-, -



	TSUMmax

	Temperature sum to max development stage

	C.d






Rate variables








	Name

	Description

	Unit





	dTSUM

	Change in temperature sum for development

	C



	dLAI

	Net change in Leaf Area Index

	d-1



	dDaysAfterHarvest

	Change in Days after Harvest

	
	






	dCuttingNumber

	Change in number of cuttings (harvests)

	
	






	dWeightLV

	Net change in leaf weight

	kg/ha/d



	dWeightRE

	Net change in reserve pool

	kg/ha/d



	dLeafLengthAct

	Change in actual leaf length

	cm/d



	LVdeath

	Leaf death rate

	kg/ha/d



	LVgrowth

	Leaf growth rate

	kg/ha/d



	dWeightHARV

	Change in harvested dry matter

	kg/ha/d



	dWeightRT

	Net change in root weight

	kg/ha/d



	LVfraction

	Fraction partitioned to leaves

	
	






	RTfraction

	Fraction partitioned to roots

	
	









State variables








	Name

	Description

	Unit





	TSUM

	Temperature sum

	C d



	LAI

	Leaf area Index

	
	






	DaysAfterHarvest

	number of days after harvest

	d



	CuttingNumber

	number of cuttings (harvests)

	
	






	TillerNumber

	Tiller number

	tillers/m2



	WeightLVgreen

	Weight of green leaves

	kg/ha



	WeightLVdead

	Weight of dead leaves

	kg/ha



	WeightHARV

	Weight of harvested dry matter

	kg/ha



	WeightRE

	Weight of reserves

	kg/ha



	WeightRT

	Weight of roots

	kg/ha



	LeafLength

	Length of leaves

	kg/ha



	WeightABG

	Total aboveground weight (harvested +
current)

	kg/ha



	SLAINT

	Integrated SLA during the season

	ha/kg



	DVS

	Development stage

	
	









Signals sent or handled

Mowing of grass will take place when a pcse.signals.mowing event is broadcasted.
This will reduce the amount of living leaf weight assuming that a certain
amount of biomass will remain on the field (this is a parameter on the MOWING
event).

External dependencies:








	Name

	Description

	Provided by





	RFTRA

	Reduction factor for transpiration

	pcse.crop.Evapotranspiration



	dLeafLengthPot

	Potential growth in leaf length

	pcse.crop.lingra.SinkLimitedGrowth



	dTillerNumber

	Change in tiller number

	pcse.crop.lingra.SinkLimitedGrowth












Source/Sink limited growth


	
class pcse.crop.lingra.SourceLimitedGrowth(**kwargs)

	Calculates the source-limited growth rate for grassland based on radiation and
temperature as driving variables and possibly limited by soil moisture or
leaf nitrogen content.The latter is based on static values for current and
maximum N concentrations and is mainly there for connecting an N module in the
future.

This routine uses a light use efficiency (LUE) approach where the LUE is adjusted
for effects of temperature and radiation level. The former is need as photosynthesis
has a clear temperature response. The latter is required as photosynthesis rate
flattens off at higher radiation levels which leads to a lower ‘apparent’ light use     efficiency. The parameter LUEreductionRadiationTB is a crude empirical correction
for this effect.

Note that a reduction in growth rate due to soil moisture is obtained through the
reduction factor for transpiration (RFTRA).

This module does not provide any true rate variables, but returns the computed
growth rate directly to the calling routine through __call__().

Simulation parameters:








	Name

	Description

	Unit





	KDIFTB

	Extinction coefficient for diffuse visible
as function of DVS.

	
	






	CO2A

	Atmospheric CO2 concentration

	ppm



	LUEreductionSoilTempTB

	Reduction function for light use efficiency
as a function of soil temperature.

	C, -



	LUEreductionRadiationTB

	Reduction function for light use efficiency
as a function of radiation level.

	MJ, -



	LUEmax

	Maximum light use efficiency.

	





Rate variables








	Name

	Description

	Unit





	RF_RadiationLevel

	Reduction factor for light use efficiency
due to the radiation level

	
	






	RF_RadiationLevel

	Reduction factor for light use efficiency
due to the radiation level

	
	






	LUEact

	The actual light use efficiency

	g /(MJ PAR)






Signals send or handled

None

External dependencies:








	Name

	Description

	Provided by





	DVS

	Crop development stage

	pylingra.LINGRA



	TemperatureSoil

	Soil Temperature

	pylingra.SoilTemperature



	RFTRA

	Reduction factor for transpiration

	pcse.crop.Evapotranspiration











	
class pcse.crop.lingra.SinkLimitedGrowth(**kwargs)

	Calculates the sink-limited growth rate for grassland assuming a temperature
driven maximum leaf elongation rate multiplied by the number of tillers. The
conversion to growth in kg/ha dry matter is done by dividing by the specific
leaf area (SLA).

Besides the sink-limited growth rate, this class also computes the change
in tiller number taking into account the growth rate, death rate and number
of days after defoliation due to harvest.

Simulation parameters:








	Name

	Description

	Unit





	TempBase

	Base temperature for leaf development and
grass phenology

	C



	LAICrit

	Cricical leaf area beyond which leaf death
due to self-shading occurs

	
	






	SiteFillingMax

	Maximum site filling for new buds

	tiller/leaf-1



	SLA

	Specific leaf area

	ha/kg



	TSUMmax

	Temperature sum to max development stage

	C.d



	TillerFormRateA0

	A parameter in the equation for tiller
formation rate valid up till 7 days after
harvest

	


	TillerFormRateB0

	B parameter in the equation for tiller
formation rate valid up till 7 days after
harvest

	


	TillerFormRateA8

	A parameter in the equation for tiller
formation rate starting from 8 days after
harvest

	


	TillerFormRateB8

	B parameter in the equation for tiller
formation rate starting from 8 days after
harvest

	





Rate variables








	Name

	Description

	Unit





	dTillerNumber

	Change in tiller number
due to the radiation level

	tillers/m2/d



	dLeafLengthPot

	Potential change in leaf length. Later on
the actual change in leaf length will be
computed taking source limitation into
account.

	cm/d



	LAIGrowthSink

	Growth of LAI based on sink-limited growth
rate.

	d-1






Signals send or handled

None

External dependencies:








	Name

	Description

	Provided by





	DVS

	Crop development stage

	pylingra.LINGRA



	LAI

	Leaf Area Index

	pylingra.LINGRA



	TemperatureSoil

	Soil Temperature

	pylingra.SoilTemperature



	RF_Temperature

	Reduction factor for LUE based on
temperature

	pylingra.SourceLimitedGrowth



	TillerNumber

	Actual number of tillers

	pylingra.LINGRA



	LVfraction

	Fraction of assimilates going to
leaves

	pylingra.LINGRA



	dWeightHARV

	Change in harvested weight
(indicates that a harvest took
place today)

	pylingra.LINGRA












Nitrogen dynamics


	
class pcse.crop.lingra_ndynamics.N_Demand_Uptake(**kwargs)

	Calculates the crop N demand and its uptake from the soil.

Crop N demand is calculated as the difference between the
actual N concentration (kg N per kg biomass) in the
vegetative plant organs (leaves, stems and roots) and the maximum
N concentration for each organ. N uptake is then estimated
as the minimum of supply from the soil and demand from the crop.

Simulation parameters

Rate variables









	Name

	Description

	Pbl

	Unit





	RNuptakeLV

	Rate of N uptake in leaves

	Y

	kg N ha-1 d-1



	RNuptakeRT

	Rate of N uptake in roots

	Y

	kg N ha-1 d-1



	RNuptake

	Total rate of N uptake

	Y

	kg N ha-1 d-1



	NdemandLV

	Ndemand of leaves based on current growth rate
and deficienties from previous time steps

	N

	kg N ha-1



	NdemandRT

	N demand of roots, idem as leaves

	N

	kg N ha-1



	Ndemand

	Total N demand (leaves + roots)

	N

	kg N ha-1






Signals send or handled

None

External dependencies









	Name

	Description

	Provided by

	Unit





	DVS

	Crop development stage

	DVS_Phenology

	
	






	NAVAIL

	Total available N from soil

	NPK_Soil_Dynamics

	kg ha-1











	
class pcse.crop.lingra_ndynamics.N_Stress(**kwargs)

	Implementation of N stress calculation through nitrogen nutrition index.

Stress factors are calculated based on the mass concentrations of N in
the vegetative biomass of the plant. For each pool of nutrients, four
concentrations are calculated based on the biomass for leaves and stems:
- the actual concentration based on the actual amount of nutrients


divided by the vegetative biomass.





	The maximum concentration, being the maximum that the plant can absorb
into its leaves and stems.


	The critical concentration, being the concentration that is needed to
maintain growth rates that are not limited by N (regulated by NCRIT_FR).
For N, the critical concentration can be lower than the maximum
concentration. This concentration is sometimes called ‘optimal
concentration’.


	The residual concentration which is the amount that is locked
into the plant structural biomass and cannot be mobilized anymore.




The stress index (SI) is determined as a simple ratio between those
concentrations according to:

\(SI = (C_{a) - C_{r})/(C_{c} - C_{r})\)

with subscript a, r and c being the actual, residual and critical
concentration for the nutrient. This results in the nitrogen nutrition index
(NNI). Finally, the reduction factor for assimilation (RFNUTR) is calculated using the
reduction factor for light use efficiency (NLUE).

Simulation parameters

Rate variables

The rate variables here are not real rate variables in the sense that they are derived
state variables and do not represent a rate. However, as they are directly used
in the rate variable calculation it is logical to put them here.









	Name

	Description

	Pbl

	Unit





	NNI

	Nitrogen nutrition index

	Y

	
	






	RFNUTR

	Reduction factor for light use efficiency

	Y

	
	









External dependencies:









	Name

	Description

	Provided by

	Unit





	DVS

	Crop development stage

	DVS_Phenology

	
	






	WST

	Dry weight of living stems

	WOFOST_Stem_Dynamics

	kg ha-1



	WeightLVgreen

	Dry weight of living leaves

	WOFOST_Leaf_Dynamics

	kg ha-1



	NamountLV

	Amount of N in leaves

	N_Crop_Dynamics

	kg ha-1











	
class pcse.crop.lingra_ndynamics.N_Crop_Dynamics(**kwargs)

	Implementation of overall N crop dynamics.

NPK_Crop_Dynamics implements the overall logic of N book-keeping within the
crop.

Simulation parameters

State variables









	Name

	Description

	Pbl

	Unit





	NamountLV

	Actual N amount in living leaves

	Y

	kg N ha-1



	NamountRT

	Actual N amount in living roots

	Y

	kg N ha-1



	Nuptake_T

	total absorbed N amount

	N

	kg N ha-1



	Nlosses_T

	Total N amount lost due to senescence

	N

	kg N ha-1






Rate variables









	Name

	Description

	Pbl

	Unit





	RNamountLV

	Weight increase (N) in leaves

	N

	kg ha-1day-1



	RNamountRT

	Weight increase (N) in roots

	N

	kg ha-1day-1



	RNdeathLV

	Rate of N loss in leaves

	N

	kg ha-1day-1



	RNdeathRT

	Rate of N loss in roots

	N

	kg ha-1day-1



	RNloss

	N loss due to senescence

	N

	kg ha-1day-1






Signals send or handled

None

External dependencies








Base classes

The base classes define much of the functionality which is used “under the
hood” in PCSE. Except for the VariableKiosk and the WeatherDataContainer
all classes are not to be called directly but should be subclassed instead.


VariableKiosk


	
class pcse.base.VariableKiosk

	VariableKiosk for registering and publishing state variables in PCSE.

No parameters are needed for instantiating the VariableKiosk.
All variables that are
defined within PCSE will be registered within the VariableKiosk, while
usually only a small subset of those will be published with the kiosk.
The value of the published
variables can be retrieved with the bracket notation as the variableKiosk
is essentially a (somewhat fancy) dictionary.

Registering/deregistering rate and state variables goes through the
self.register_variable() and self.deregister_variable() methods while the
set_variable() method is used to update a value of a published variable.
In general, none of these methods need to be called by users directly as
the logic within the StatesTemplate and RatesTemplate takes care of
this.

Finally, the variable_exists() can be used to check if a variable is
registered, while the flush_states() and flush_rates() are used to
remove (flush) the values of any published state and rate variables.

example:

>>> import pcse
>>> from pcse.base import VariableKiosk
>>>
>>> v = VariableKiosk()
>>> id0 = 0
>>> v.register_variable(id0, "VAR1", type="S", publish=True)
>>> v.register_variable(id0, "VAR2", type="S", publish=False)
>>>
>>> id1 = 1
>>> v.register_variable(id1, "VAR3", type="R", publish=True)
>>> v.register_variable(id1, "VAR4", type="R", publish=False)
>>>
>>> v.set_variable(id0, "VAR1", 1.35)
>>> v.set_variable(id1, "VAR3", 310.56)
>>>
>>> print v
Contents of VariableKiosk:
 * Registered state variables: 2
 * Published state variables: 1 with values:
  - variable VAR1, value: 1.35
 * Registered rate variables: 2
 * Published rate variables: 1 with values:
  - variable VAR3, value: 310.56

>>> print v["VAR3"]
310.56
>>> v.set_variable(id0, "VAR3", 750.12)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "pcse/base.py", line 148, in set_variable
    raise exc.VariableKioskError(msg % varname)
pcse.exceptions.VariableKioskError: Unregistered object tried to set the value of variable 'VAR3': access denied.
>>>
>>> v.flush_rates()
>>> print v
Contents of VariableKiosk:
 * Registered state variables: 2
 * Published state variables: 1 with values:
  - variable VAR1, value: 1.35
 * Registered rate variables: 2
 * Published rate variables: 1 with values:
  - variable VAR3, value: undefined

>>> v.flush_states()
>>> print v
Contents of VariableKiosk:
 * Registered state variables: 2
 * Published state variables: 1 with values:
  - variable VAR1, value: undefined
 * Registered rate variables: 2
 * Published rate variables: 1 with values:
  - variable VAR3, value: undefined






	
deregister_variable(oid, varname)

	Object with id(object) asks to deregister varname from kiosk


	Parameters

	
	oid – Object id (from python builtin id() function) of the
state/rate object registering this variable.


	varname – Name of the variable to be registered, e.g. “DVS”













	
flush_rates()

	flush the values of all published rate variable from the kiosk.






	
flush_states()

	flush the values of all state variable from the kiosk.






	
register_variable(oid, varname, type, publish=False)

	Register a varname from object with id, with given type


	Parameters

	
	oid – Object id (from python builtin id() function) of the
state/rate object registering this variable.


	varname – Name of the variable to be registered, e.g. “DVS”


	type – Either “R” (rate) or “S” (state) variable, is handled
automatically by the states/rates template class.


	publish – True if variable should be published in the kiosk,
defaults to False













	
set_variable(id, varname, value)

	Let object with id, set the value of variable varname


	Parameters

	
	id – Object id (from python builtin id() function) of the
state/rate object registering this variable.


	varname – Name of the variable to be updated


	value – Value to be assigned to the variable.













	
variable_exists(varname)

	Returns True if the state/rate variable is registered in the kiosk.


	Parameters

	varname – Name of the variable to be checked for registration.















Base classes for parameters, rates and states


	
class pcse.base.StatesTemplate(**kwargs)

	Takes care of assigning initial values to state variables, registering
variables in the kiosk and monitoring assignments to variables that are
published.


	Parameters

	
	kiosk – Instance of the VariableKiosk class. All state variables
will be registered in the kiosk in order to enfore that variable names
are unique across the model. Moreover, the value of variables that
are published will be available through the VariableKiosk.


	publish – Lists the variables whose values need to be published
in the VariableKiosk. Can be omitted if no variables need to be
published.








Initial values for state variables can be specified as keyword when instantiating
a States class.

example:

>>> import pcse
>>> from pcse.base import VariableKiosk, StatesTemplate
>>> from pcse.traitlets import Float, Integer, Instance
>>> from datetime import date
>>>
>>> k = VariableKiosk()
>>> class StateVariables(StatesTemplate):
...     StateA = Float()
...     StateB = Integer()
...     StateC = Instance(date)
...
>>> s1 = StateVariables(k, StateA=0., StateB=78, StateC=date(2003,7,3),
...                     publish="StateC")
>>> print s1.StateA, s1.StateB, s1.StateC
0.0 78 2003-07-03
>>> print k
Contents of VariableKiosk:
 * Registered state variables: 3
 * Published state variables: 1 with values:
  - variable StateC, value: 2003-07-03
 * Registered rate variables: 0
 * Published rate variables: 0 with values:

>>>
>>> s2 = StateVariables(k, StateA=200., StateB=1240)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "pcse/base.py", line 396, in __init__
    raise exc.PCSEError(msg)
pcse.exceptions.PCSEError: Initial value for state StateC missing.






	
touch()

	Re-assigns the value of each state variable, thereby updating its
value in the variablekiosk if the variable is published.










	
class pcse.base.RatesTemplate(**kwargs)

	Takes care of registering variables in the kiosk and monitoring
assignments to variables that are published.


	Parameters

	
	kiosk – Instance of the VariableKiosk class. All rate variables
will be registered in the kiosk in order to enfore that variable names
are unique across the model. Moreover, the value of variables that
are published will be available through the VariableKiosk.


	publish – Lists the variables whose values need to be published
in the VariableKiosk. Can be omitted if no variables need to be
published.








For an example see the StatesTemplate. The only difference is that the
initial value of rate variables does not need to be specified because
the value will be set to zero (Int, Float variables) or False (Boolean
variables).


	
zerofy()

	Sets the values of all rate values to zero (Int, Float)
or False (Boolean).










	
class pcse.base.ParamTemplate(**kwargs)

	Template for storing parameter values.

This is meant to be subclassed by the actual class where the parameters
are defined.

example:

>>> import pcse
>>> from pcse.base import ParamTemplate
>>> from pcse.traitlets import Float
>>>
>>>
>>> class Parameters(ParamTemplate):
...     A = Float()
...     B = Float()
...     C = Float()
...
>>> parvalues = {"A" :1., "B" :-99, "C":2.45}
>>> params = Parameters(parvalues)
>>> params.A
1.0
>>> params.A; params.B; params.C
1.0
-99.0
2.4500000000000002
>>> parvalues = {"A" :1., "B" :-99}
>>> params = Parameters(parvalues)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "pcse/base.py", line 205, in __init__
    raise exc.ParameterError(msg)
pcse.exceptions.ParameterError: Value for parameter C missing.











Base and utility classes for weather data


	
class pcse.base.WeatherDataProvider

	Base class for all weather data providers.

Support for weather ensembles in a WeatherDataProvider has to be indicated
by setting the class variable supports_ensembles = True

Example:

class MyWeatherDataProviderWithEnsembles(WeatherDataProvider):
    supports_ensembles = True

    def __init__(self):
        WeatherDataProvider.__init__(self)

        # remaining initialization stuff goes here.






	
check_keydate(key)

	Check representations of date for storage/retrieval of weather data.

The following formats are supported:


	a date object


	a datetime object


	a string of the format YYYYMMDD


	a string of the format YYYYDDD




Formats 2-4 are all converted into a date object internally.






	
export()

	Exports the contents of the WeatherDataProvider as a list of dictionaries.

The results from export can be directly converted to a Pandas dataframe
which is convenient for plotting or analyses.










	
class pcse.base.WeatherDataContainer(*args, **kwargs)

	Class for storing weather data elements.

Weather data elements are provided through keywords that are also the
attribute names under which the variables can accessed in the
WeatherDataContainer. So the keyword TMAX=15 sets an attribute
TMAX with value 15.

The following keywords are compulsory:


	Parameters

	
	LAT – Latitude of location (decimal degree)


	LON – Longitude of location (decimal degree)


	ELEV – Elevation of location (meters)


	DAY – the day of observation (python datetime.date)


	IRRAD – Incoming global radiaiton (J/m2/day)


	TMIN – Daily minimum temperature (Celsius)


	TMAX – Daily maximum temperature (Celsius)


	VAP – Daily mean vapour pressure (hPa)


	RAIN – Daily total rainfall (cm/day)


	WIND – Daily mean wind speed at 2m height (m/sec)


	E0 – Daily evaporation rate from open water (cm/day)


	ES0 – Daily evaporation rate from bare soil (cm/day)


	ET0 – Daily evapotranspiration rate from reference crop (cm/day)








There are two optional keywords arguments:


	Parameters

	
	TEMP – Daily mean temperature (Celsius), will otherwise be
derived from (TMAX+TMIN)/2.


	SNOWDEPTH – Depth of snow cover (cm)









	
add_variable(varname, value, unit)

	Adds an attribute <varname> with <value> and given <unit>


	Parameters

	
	varname – Name of variable to be set as attribute name (string)


	value – value of variable (attribute) to be added.


	unit – string representation of the unit of the variable. Is
only use for printing the contents of the WeatherDataContainer.



















Signals defined

This module defines and describes the signals used by PCSE

Signals are used by PCSE to notify components of events such as sowing,
harvest and termination. Events can be send by any SimulationObject through
its SimulationObject._send_signal() method. Similarly, any SimulationObject
can receive signals by registering a handler through the
SimulationObject._connect_signal() method.
Variables can be passed to the handler of the signal through
positional or keyword arguments. However, it is highly discouraged to use
positional arguments when sending signals in order to avoid conflicts between
positional and keyword arguments.

An example can help to clarify how signals are used in PCSE but check also the
documentation of the PyDispatcher [http://pydispatcher.sourceforge.net/] package for more information:

import sys, os
import math
sys.path.append('/home/wit015/Sources/python/pcse/')
import datetime as dt

import pcse
from pcse.base import SimulationObject, VariableKiosk

mysignal = "My first signal"

class MySimObj(SimulationObject):

    def initialize(self, day, kiosk):
        self._connect_signal(self.handle_mysignal, mysignal)

    def handle_mysignal(self, arg1, arg2):
        print "Value of arg1,2: %s, %s" % (arg1, arg2)

    def send_signal_with_exact_arguments(self):
        self._send_signal(signal=mysignal, arg2=math.pi, arg1=None)

    def send_signal_with_more_arguments(self):
        self._send_signal(signal=mysignal, arg2=math.pi, arg1=None, 
                          extra_arg="extra")

    def send_signal_with_missing_arguments(self):
        self._send_signal(signal=mysignal, arg2=math.pi, extra_arg="extra")


# Create an instance of MySimObj
day = dt.date(2000,1,1)
k = VariableKiosk()
mysimobj = MySimObj(day, k)

# This sends exactly the right amount of keyword arguments
mysimobj.send_signal_with_exact_arguments()

# this sends an additional keyword argument 'extra_arg' which is ignored.
mysimobj.send_signal_with_more_arguments()

# this sends the signal with a missing 'arg1' keyword argument which the handler
# expects and thus causes an error, raising a TypeError
try:
    mysimobj.send_signal_with_missing_arguments()
except TypeError, exc:
    print "TypeError occurred: %s" % exc





Saving this code as a file test_signals.py and importing it gives the
following output:

>>> import test_signals
Value of arg1,2: None, 3.14159265359
Value of arg1,2: None, 3.14159265359
TypeError occurred: handle_mysignal() takes exactly 3 non-keyword arguments (1 given)





Currently the following signals are used within PCSE with the following
keywords.

CROP_START


Indicates that a new crop cycle will start:



	self._send_signal(signal=signals.crop_start, day=<date>,
	crop_name=<string>, variety_name=<string>,
crop_start_type=<string>, crop_end_type=<string>)








keyword arguments with signals.crop_start:



	day: Current date


	crop_name: a string identifying the crop


	variety_name: a string identifying the crop variety


	crop_start_type: either ‘sowing’ or ‘emergence’


	crop_end_type: either ‘maturity’, ‘harvest’ or ‘earliest’










CROP_FINISH


Indicates that the current crop cycle is finished:

self._send_signal(signal=signals.crop_finish, day=<date>,
                  finish_type=<string>, crop_delete=<True|False>)








keyword arguments with signals.crop_finish:



	day: Current date


	finish_type: string describing the reason for finishing the simulation, e.g.
maturity, harvest, all leaves died, maximum duration reached, etc.


	crop_delete: Set to True when the CropSimulation object must be deleted
from the system, for example for the implementation of crop rotations.
Defaults to False.







TERMINATE


Indicates that the entire system should terminate (crop & soil water balance) and
that terminal output should be collected:

self._send_signal(signal=signals.terminate)





No keyword arguments are defined for this signal




OUTPUT


Indicates that the model state should be saved for later use:

self._send_signal(signal=signals.output)





No keyword arguments are defined for this signal




SUMMARY_OUTPUT


Indicates that the model state should be saved for later use,
SUMMARY_OUTPUT is only generated when a CROP_FINISH signal is
received indicating that the crop simulation must finish:

self._send_signal(signal=signals.output)





No keyword arguments are defined for this signal




APPLY_NPK

Is used for application of Nitrate/Phosphate/Potassium (N/P/K) fertilizer:

self._send_signal(signal=signals.apply_npk, N_amount=<float>, P_amount=<float>, K_amount=<float>,
                  N_recovery<float>, P_recovery=<float>, K_recovery=<float>)





Keyword arguments with signals.apply_npk:



	N/P/K_amount: Amount of fertilizer in kg/ha applied on this day.


	N/P/K_recovery: Recovery fraction for the given type of fertilizer







IRRIGATE

Is used for sending irrigation events:

self._send_signal(signal=signals.irrigate, amount=<float>, efficiency=<float>)





Keyword arguments with signals.irrigate:



	amount: Amount of irrigation in cm water applied on this day.


	efficiency: efficiency of irrigation, meaning that the total amount of water that
is added to the soil reservoir equals amount * efficiency







MOWING

Is used for sending mowing events used by the LINGRA/LINGRA-N models:

self._send_signal(signal=signals.mowing, biomass_remaining=<float>)





Keyword arguments with signals.mowing:



	biomass_remaining: The amount of biomass remaining after mowing in kg/ha.









Utilities

The utilities section deals with tools for reading weather data and parameter
values from files or databases.


Tools for reading input files

The file_input tools contain several classes for reading weather files,
parameter files and agromanagement files.


	
class pcse.fileinput.CABOFileReader(fname)

	Reads CABO files with model parameter definitions.

The parameter definitions of Wageningen crop models are generally
written in the CABO format. This class reads the contents, parses
the parameter names/values and returns them as a dictionary.


	Parameters

	fname – parameter file to read and parse



	Returns

	dictionary like object with parameter key/value pairs.





Note that this class does not yet fully support reading all features
of CABO files. For example, the parsing of booleans, date/times and
tabular parameters is not supported and will lead to errors.

The header of the CABO file (marked with ** at the first line) is
read and can be retrieved by the get_header() method or just by
a print on the returned dictionary.

Example

A parameter file ‘parfile.cab’ which looks like this:

** CROP DATA FILE for use with WOFOST Version 5.4, June 1992
**
** WHEAT, WINTER 102
** Regions: Ireland, central en southern UK (R72-R79), 
**          Netherlands (not R47), northern Germany (R11-R14)
CRPNAM='Winter wheat 102, Ireland, N-U.K., Netherlands, N-Germany'
CROP_NO=99
TBASEM   = -10.0    ! lower threshold temp. for emergence [cel]
DTSMTB   =   0.00,    0.00,     ! daily increase in temp. sum 
            30.00,   30.00,     ! as function of av. temp. [cel; cel d]
            45.00,   30.00
** maximum and minimum concentrations of N, P, and K
** in storage organs        in vegetative organs [kg kg-1]
NMINSO   =   0.0110 ;       NMINVE   =   0.0030





Can be read with the following statements:

>>>fileparameters = CABOFileReader('parfile.cab')
>>>print fileparameters['CROP_NO']
99
>>>print fileparameters
** CROP DATA FILE for use with WOFOST Version 5.4, June 1992
**
** WHEAT, WINTER 102
** Regions: Ireland, central en southern UK (R72-R79),
**          Netherlands (not R47), northern Germany (R11-R14)
------------------------------------
TBASEM: -10.0 <type 'float'>
DTSMTB: [0.0, 0.0, 30.0, 30.0, 45.0, 30.0] <type 'list'>
NMINVE: 0.003 <type 'float'>
CROP_NO: 99 <type 'int'>
CRPNAM: Winter wheat 102, Ireland, N-U.K., Netherlands, N-Germany <type 'str'>
NMINSO: 0.011 <type 'float'>










	
class pcse.fileinput.CABOWeatherDataProvider(fname, fpath=None, ETmodel='PM', distance=1)

	Reader for CABO weather files.


	Parameters

	
	fname – root name of CABO weather files to read


	fpath – path where to find files, can be absolute or relative.


	ETmodel – “PM”|”P” for selecting penman-monteith or Penman
method for reference evapotranspiration. Defaults to “PM”.


	distance – maximum interpolation distance for meteorological
variables, defaults to 1 day.






	Returns

	callable like object with meteo records keyed on date.





The Wageningen crop models that are written in FORTRAN or FST often use
the CABO weather system (http://edepot.wur.nl/43010) for storing and
reading weather data. This class implements a reader for the CABO weather
files and also implements additional features like interpolation of
weather data in case of missing values, conversion of sunshine duration
to global radiation estimates and calculation the reference
evapotranspiration values for water, soil and plants (E0, ES0, ET0)
using the Penman approach.

A difference with the old CABOWE system is that the python implementation
will read and store all files (e.g. years) available for a certain
station instead of loading a new file when crossing a year boundary.


Note

some conversions are done by the CABOWeaterDataProvider from
the units in the CABO weather file for compatibility with WOFOST:


	vapour pressure from kPa to hPa


	radiation from kJ/m2/day to J/m2/day


	rain from mm/day to cm/day.


	all evaporation/transpiration rates are also returned in cm/day.






Example

The file ‘nl1.003’ provides weather data for the year 2003 for the
station in Wageningen and can be found in the cabowe/ folder of the
WOFOST model distribution. This file can be read using:

>>> weather_data = CABOWeatherDataProvider('nl1', fpath="./meteo/cabowe")
>>> print weather_data(datetime.date(2003,7,26))
Weather data for 2003-07-26 (DAY)
IRRAD:  12701000.00  J/m2/day
 TMIN:        15.90   Celsius
 TMAX:        23.00   Celsius
  VAP:        16.50       hPa
 WIND:         3.00     m/sec
 RAIN:         0.12    cm/day
   E0:         0.36    cm/day
  ES0:         0.32    cm/day
  ET0:         0.31    cm/day
Latitude  (LAT):    51.97 degr.
Longitude (LON):     5.67 degr.
Elevation (ELEV):    7.0 m.





Alternatively the date in the print command above can be specified as
string with format YYYYMMDD or YYYYDDD.






	
class pcse.fileinput.PCSEFileReader(fname)

	Reader for parameter files in the PCSE format.

This class is a replacement for the CABOFileReader. The latter can be
used for reading parameter files in the CABO format, however this format
has rather severe limitations: it only supports string, integer, float
and array parameters. There is no support for specifying parameters with
dates for example (other then specifying them as a string).

The PCSEFileReader is a much more versatile tool for creating parameter
files because it leverages the power of the python interpreter for
processing parameter files through the execfile functionality in python.
This means that anything that can be done in a python script can also be
done in a PCSE parameter file.


	Parameters

	fname – parameter file to read and parse



	Returns

	dictionary object with parameter key/value pairs.





Example

Below is an example of a parameter file ‘parfile.pcse’. Parameters can
be defined the ‘CABO’-way, but also advanced functionality can be used by
importing modules, defining parameters as dates or numpy arrays and even
applying function on arrays (in this case np.sin):

"""This is the header of my parameter file.

This file is derived from the following sources
* dummy file for demonstrating the PCSEFileReader
* contains examples how to leverage dates, arrays and functions, etc.
"""

import numpy as np
import datetime as dt

TSUM1 = 1100
TSUM2 = 900
DTSMTB = [ 0., 0.,
           5., 5.,
          20., 25.,
          30., 25.]
AMAXTB = np.sin(np.arange(12))
cropname = 'alfalfa'
CROP_START_DATE = dt.date(2010,5,14)





Can be read with the following statements:

>>>fileparameters = PCSEFileReader('parfile.pcse')
>>>print fileparameters['TSUM1']
1100
>>>print fileparameters['CROP_START_DATE']
2010-05-14
>>>print fileparameters
PCSE parameter file contents loaded from:
D:\UserData\pcse_examples\parfile.pw

This is the header of my parameter file.

This file is derived from the following sources
* dummy file for demonstrating the PCSEFileReader
* contains examples how to leverage dates, arrays and functions, etc.
DTSMTB: [0.0, 0.0, 5.0, 5.0, 20.0, 25.0, 30.0, 25.0] (<type 'list'>)
CROP_START_DATE: 2010-05-14 (<type 'datetime.date'>)
TSUM2: 900 (<type 'int'>)
cropname: alfalfa (<type 'str'>)
AMAXTB: [ 0.          0.84147098  0.90929743  0.14112001 -0.7568025
  -0.95892427  -0.2794155   0.6569866   0.98935825  0.41211849
  -0.54402111 -0.99999021] (<type 'numpy.ndarray'>)
TSUM1: 1100 (<type 'int'>)










	
class pcse.fileinput.ExcelWeatherDataProvider(xls_fname, missing_snow_depth=None, force_reload=False)

	Reading weather data from an excel file (.xlsx only).


	Parameters

	
	xls_fname – name of the Excel file to be read


	mising_snow_depth – the value that should use for missing SNOW_DEPTH values,
the default value is None.


	force_reload – bypass the cache file, reload data from the .xlsx file and
write a new cache file. Cache files are written under $HOME/.pcse/meteo_cache








For reading weather data from file, initially only the CABOWeatherDataProvider
was available that reads its data from a text file in the CABO Weather format.
Nevertheless, building CABO weather files is tedious as for each year a new
file must constructed. Moreover it is rather error prone and formatting
mistakes are easily leading to errors.

To simplify providing weather data to PCSE models, a new data provider
was written that reads its data from simple excel files

The ExcelWeatherDataProvider assumes that records are complete and does
not make an effort to interpolate data as this can be easily
accomplished in Excel itself. Only SNOW_DEPTH is allowed to be missing
as this parameter is usually not provided outside the winter season.






	
class pcse.fileinput.CSVWeatherDataProvider(csv_fname, delimiter=',', dateformat='%Y%m%d', ETmodel='PM', force_reload=False)

	Reading weather data from a CSV file.


	Parameters

	
	csv_fname – name of the CSV file to be read


	delimiter – CSV delimiter


	dateformat – date format to be read. Default is ‘%Y%m%d’


	ETmodel – “PM”|”P” for selecting Penman-Monteith or Penman
method for reference evapotranspiration. Default is ‘PM’.


	force_reload – Ignore cache file and reload from the CSV file








The CSV file should have the following structure (sample), missing values should be added as ‘NaN’:

## Site Characteristics
Country     = 'Netherlands'
Station     = 'Wageningen, Haarweg'
Description = 'Observed data from Station Haarweg in Wageningen'
Source      = 'Meteorology and Air Quality Group, Wageningen University'
Contact     = 'Peter Uithol'
Longitude = 5.67; Latitude = 51.97; Elevation = 7; AngstromA = 0.18; AngstromB = 0.55; HasSunshine = False
## Daily weather observations (missing values are NaN)
DAY,IRRAD,TMIN,TMAX,VAP,WIND,RAIN,SNOWDEPTH
20040101,NaN,-0.7,1.1,0.55,3.6,0.5,NaN
20040102,3888,-7.5,0.9,0.44,3.1,0,NaN
20040103,2074,-6.8,-0.5,0.45,1.8,0,NaN
20040104,1814,-3.6,5.9,0.66,3.2,2.5,NaN
20040105,1469,3,5.7,0.78,2.3,1.3,NaN
[...]

with
IRRAD in kJ/m2/day or hours
TMIN and TMAX in Celsius (°C)
VAP in kPa
WIND in m/sec
RAIN in mm
SNOWDEPTH in cm





For reading weather data from a file, initially the CABOWeatherDataProvider
was available which read its data from text in the CABO weather format.
Nevertheless, building CABO weather files is tedious as for each year a new
file must constructed. Moreover it is rather error prone and formatting
mistakes are easily leading to errors.

To simplify providing weather data to PCSE models, a new data provider
has been derived from the ExcelWeatherDataProvider that reads its data
from simple CSV files.

The CSVWeatherDataProvider assumes that records are complete and does
not make an effort to interpolate data as this can be easily
accomplished in a text editor. Only SNOWDEPTH is allowed to be missing
as this parameter is usually not provided outside the winter season.






	
class pcse.fileinput.YAMLAgroManagementReader(fname)

	Reads PCSE agromanagement files in the YAML format.


	Parameters

	fname – filename of the agromanagement file. If fname is not provided as a absolute or
relative path the file is assumed to be in the current working directory.










	
class pcse.fileinput.YAMLCropDataProvider(fpath=None, repository=None, force_reload=False)

	A crop data provider for reading crop parameter sets stored in the YAML format.



	param fpath

	full path to directory containing YAML files



	param repository

	URL to repository containg YAML files. This url should be
the raw content (e.g. starting with ‘https://raw.githubusercontent.com’)



	param force_reload

	If set to True, the cache file is ignored and al
parameters are reloaded (default False).








This crop data provider can read and store the parameter sets for multiple
crops which is different from most other crop data providers that only can
hold data for a single crop. This crop data providers is therefore suitable
for running crop rotations with different crop types as the data provider
can switch the active crop.

The most basic use is to call YAMLCropDataProvider with no parameters. It will
than pull the crop parameters from my github repository at
https://github.com/ajwdewit/WOFOST_crop_parameters:

>>> from pcse.fileinput import YAMLCropDataProvider
>>> p = YAMLCropDataProvider()
>>> print(p)
YAMLCropDataProvider - crop and variety not set: no activate crop parameter set!





All crops and varieties have been loaded from the YAML file, however no activate
crop has been set. Therefore, we need to activate a a particular crop and variety:

>>> p.set_active_crop('wheat', 'Winter_wheat_101')
>>> print(p)
YAMLCropDataProvider - current active crop 'wheat' with variety 'Winter_wheat_101'
Available crop parameters:
 {'DTSMTB': [0.0, 0.0, 30.0, 30.0, 45.0, 30.0], 'NLAI_NPK': 1.0, 'NRESIDLV': 0.004,
 'KCRIT_FR': 1.0, 'RDRLV_NPK': 0.05, 'TCPT': 10, 'DEPNR': 4.5, 'KMAXRT_FR': 0.5,
 ...
 ...
 'TSUM2': 1194, 'TSUM1': 543, 'TSUMEM': 120}





Additionally, it is possible to load YAML parameter files from your local file system:

>>> p = YAMLCropDataProvider(fpath=r"D:\UserData\sources\WOFOST_crop_parameters")
>>> print(p)
YAMLCropDataProvider - crop and variety not set: no activate crop parameter set!





Finally, it is possible to pull data from your fork of my github repository by specifying
the URL to that repository:

>>> p = YAMLCropDataProvider(repository="https://raw.githubusercontent.com/<your_account>/WOFOST_crop_parameters/master/")





To increase performance of loading parameters, the YAMLCropDataProvider will create a
cache file that can be restored much quicker compared to loading the YAML files.
When reading YAML files from the local file system, care is taken to ensure that the
cache file is re-created when updates to the local YAML are made. However, it should
be stressed that this is not possible when parameters are retrieved from a URL
and there is a risk that parameters are loaded from an outdated cache file. In that
case use force_reload=True to force loading the parameters from the URL.







Simple or dummy data providers

This class of data providers can be used to provide parameter values in cases
where separate files or a database is not needed or not practical. An example
is the set of soil parameters for simulation of potential production conditions
where the value of the parameters does not matter but nevertheless some values
must be provided to the model.


	
class pcse.util.DummySoilDataProvider

	This class is to provide some dummy soil parameters for potential production simulation.

Simulation of potential production levels is independent of the soil. Nevertheless, the model
does not some parameter values. This data provider provides some hard coded parameter values for
this situation.






	
class pcse.util.WOFOST72SiteDataProvider(**kwargs)

	Site data provider for WOFOST 7.2.

Site specific parameters for WOFOST 7.2 can be provided through this data provider as well as through
a normal python dictionary. The sole purpose of implementing this data provider is that the site
parameters for WOFOST are documented, checked and that sensible default values are given.

The following site specific parameter values can be set through this data provider:

- IFUNRN    Indicates whether non-infiltrating fraction of rain is a function of storm size (1)
            or not (0). Default 0
- NOTINF    Maximum fraction of rain not-infiltrating into the soil [0-1], default 0.
- SSMAX     Maximum depth of water that can be stored on the soil surface [cm]
- SSI       Initial depth of water stored on the surface [cm]
- WAV       Initial amount of water in total soil profile [cm]
- SMLIM     Initial maximum moisture content in initial rooting depth zone [0-1], default 0.4





Currently only the value for WAV is mandatory to specify.






	
class pcse.util.WOFOST80SiteDataProvider(**kwargs)

	Site data provider for WOFOST 8.0.

Site specific parameters for WOFOST 8.0 can be provided through this data provider as well as through
a normal python dictionary. The sole purpose of implementing this data provider is that the site
parameters for WOFOST are documented, checked and that sensible default values are given.

The following site specific parameter values can be set through this data provider:

- IFUNRN        Indicates whether non-infiltrating fraction of rain is a function of
                storm size (1) or not (0). Default 0
- NOTINF        Maximum fraction of rain not-infiltrating into the soil [0-1],
                default 0.
- SSMAX         Maximum depth of water that can be stored on the soil surface [cm]
- SSI           Initial depth of water stored on the surface [cm]
- WAV           Initial amount of water in total soil profile [cm]
- SMLIM         Initial maximum moisture content in initial rooting depth zone [0-1],
                default 0.4
- CO2           Atmospheric CO2 level (ppm), default 360.
- BG_N_SUPPLY   Background N supply through atmospheric deposition in kg/ha/day. Can be
                in the order of 25 kg/ha/year in areas with high N pollution. Default 0.0
- NSOILBASE     Base N amount available in the soil. This is often estimated as the nutrient
                left over from the previous growth cycle (surplus nutrients, crop residues
                or green manure).
- NSOILBASE_FR  Daily fraction of soil N coming available through mineralization
- BG_P_SUPPLY   Background P supply in kg/ha/day. Usually this is mainly through deposition
                of dust and an order of magnitude smaller than N deposition. Default 0.0
- PSOILBASE     Base P amount available in the soil.
- PSOILBASE_FR  Daily fraction of soil P coming available through mineralization
- BG_K_SUPPLY   Background P supply in kg/ha/day. Default 0.0
- KSOILBASE     Base K amount available in the soil
- KSOILBASE_FR  Daily fraction of soil K coming available through mineralization
- NAVAILI       Amount of N available in the pool at initialization of the system [kg/ha]
- PAVAILI       Amount of P available in the pool at initialization of the system [kg/ha]
- KAVAILI       Amount of K available in the pool at initialization of the system [kg/ha]





Currently, the parameters for initial water availability (WAV) and initial availability of
nutrients (NAVAILI, PAVAILI, KAVAILI) are mandatory to specify.







The database tools

The database tools contain functions and classes for retrieving agromanagement,
parameter values and weather variables from database structures implemented for
different versions of the European Crop Growth Monitoring System.

Note that the data providers only provide functionality for reading data,
there are no tools here writing simulation results to a CGMS database. This was
done on purpose as writing data can be a complex matter and it is our
experience that this can be done more easily with dedicated database loader
tools such as SQLLoader [http://www.oracle.com/technetwork/database/enterprise-edition/sql-loader-overview-095816.html] for ORACLE or the load data infile syntax of MySQL


The CGMS8 database

The CGMS8 tools are for reading data from a database structure that is used
by CGMS executable version 9 and 10.


	
class pcse.db.cgms8.GridWeatherDataProvider(engine, grid_no, start_date=None, end_date=None, recalc_ET=False, use_cache=True)

	Retrieves meteodata from the GRID_WEATHER table in a CGMS database.


	Parameters

	
	metadata – SqlAlchemy metadata object providing DB access


	grid_no – CGMS Grid ID


	startdate – Retrieve meteo data starting with startdate
(datetime.date object)


	enddate – Retrieve meteo data up to and including enddate
(datetime.date object)


	recalc_ET – Set to True to force calculation of reference
ET values. Mostly useful when values have not been calculated
in the CGMS database.


	use_cache – Set to False to ignore read/writing a cache file.








Note that all meteodata is first retrieved from the DB and stored
internally. Therefore, no DB connections are stored within the class
instance. This makes that class instances can be pickled.






	
class pcse.db.cgms8.SoilDataIterator(engine, grid_no)

	Soil data iterator for CGMS8.

The only difference is that in CGMS8 the table is called ‘ELEMENTARY_MAPPING_UNIT’ and
in CGMS12 it is called ‘EMU’






	
class pcse.db.cgms8.CropDataProvider(engine, grid_no, crop_no, campaign_year)

	Retrieves the crop parameters for the given grid_no, crop_no and year
from the tables CROP_CALENDAR, CROP_PARAMETER_VALUE and VARIETY_PARAMETER_VALUE.


	Parameters

	
	engine – SqlAlchemy engine object providing DB access


	grid_no – Integer grid ID, maps to the GRID_NO column in the table


	crop_no – Integer crop ID, maps to the CROP_NO column in the table


	campaign_year – Integer campaign year, maps to the YEAR column in the table.
The campaign year usually refers to the year of the harvest. Thus for crops
crossing calendar years, the start_date can be in the previous year.













	
class pcse.db.cgms8.STU_Suitability(engine, crop_no)

	Returns a set() of suitable STU’s for given crop_no.


	Parameters

	
	engine – SqlAlchemy engine object providing DB access


	crop_no – Integer crop ID, maps to the CROP_NO column in the table













	
class pcse.db.cgms8.SiteDataProvider(engine, grid_no, crop_no, campaign_year, stu_no)

	Provides the site data from the tables INITIAL_SOIL_WATER and SITE.


	Parameters

	
	engine – SqlAlchemy engine object providing DB access


	grid_no – Grid number (int)


	crop_no – Crop number (int)


	campaign_year – Campaign year (int)


	stu_no – soil typologic unit number (int)








Note that the parameter SSI (Initial surface storage) is
set to zero

Moreover, the start date of the water balance is defined by the
column GIVEN_STARTDATE_WATBAL. This value can be accessed as
an attribute start_date_waterbalance.







The CGMS12 database

The CGMS12 tools are for reading data from a CGMS12 database structure that
is used by CGMS executable version 11 and BioMA 2014.

Tools for reading weather data and timer, soil and site parameters
from a CGMS12 compatible database.


	
class pcse.db.cgms12.WeatherObsGridDataProvider(engine, grid_no, start_date=None, end_date=None, recalc_ET=False, recalc_TEMP=False, use_cache=True)

	Retrieves meteodata from the WEATHER_OBS_GRID table in a CGMS12
compatible database.


	Parameters

	
	engine – SqlAlchemy engine object providing DB access


	grid_no – Grid number (int) to retrieve data for


	start_date – Retrieve meteo data starting with start_date
(datetime.date object)


	end_date – Retrieve meteo data up to and including end_date
(datetime.date object)


	recalc_ET – Set to True to force calculation of reference
ET values. Mostly useful when values have not been calculated
in the CGMS database.


	recalc_TEMP – Set to True to force calculation of daily average
temperature (TEMP) from TMIN and TMAX: TEMP = (TMIN+TMAX)/2.








Note that all meteodata is first retrieved from the DB and stored
internally. Therefore, no DB connections are stored within the class
instance. This makes that class instances can be pickled.

If start_date and end_date are not provided then the entire time-series
for the grid is retrieved.






	
class pcse.db.cgms12.AgroManagementDataProvider(engine, grid_no, crop_no, campaign_year, campaign_start=None)

	Class for providing agromanagement data from the CROP_CALENDAR table in a CGMS12 database.


	Parameters

	
	engine – SqlAlchemy engine object providing DB access


	grid_no – Integer grid ID, maps to the grid_no column in the table


	crop_no – Integer id of crop, maps to the crop_no column in the table


	campaign_year – Integer campaign year, maps to the YEAR column in the table.
The campaign year usually refers to the year of the harvest. Thus for crops
crossing calendar years, the start_date can be in the previous year.


	campaign_start – Optional keyword that can be used to define the start of the
campaign. Note that by default the campaign_start_date is set equal to the
crop_start_date which means that the simulation starts when the crop starts.
This default behaviour can be changed using this keyword. It can have multiple meanings:



	if a date object is passed, the campaign is assumed to start on this date.


	if an int/float is passed, the campaign_start_date is calculated as the
crop_start_date minus the number of days provided by campaign_start.
















For adjusting the campaign_start_Date, see also the set_campaign_start_date(date) method
to update the campaign_start_date on an existing AgroManagementDataProvider.


	
set_campaign_start_date(start_date)

	Updates the value for the campaign_start_date.

This is useful only when the INITIAL_SOIL_WATER table in CGMS12 defines a different
campaign_start










	
class pcse.db.cgms12.SoilDataIterator(engine, grid_no)

	Class for iterating over the different soils in a CGMS grid.

Instances of this class behave like a list, allowing to iterate
over the soils in a CGMS grid. An example:

>>> soil_iterator = SoilDataIterator(engine, grid_no=15060)
>>> print(soildata)
Soil data for grid_no=15060 derived from oracle+cx_oracle://cgms12eu:***@eurdas.world
  smu_no=9050131, area=625000000, stu_no=9000282 covering 50% of smu.
    Soil parameters {'SMLIM': 0.312, 'SMFCF': 0.312, 'SMW': 0.152, 'CRAIRC': 0.06,
                     'KSUB': 10.0, 'RDMSOL': 10.0, 'K0': 10.0, 'SOPE': 10.0, 'SM0': 0.439}
  smu_no=9050131, area=625000000, stu_no=9000283 covering 50% of smu.
    Soil parameters {'SMLIM': 0.28325, 'SMFCF': 0.28325, 'SMW': 0.12325, 'CRAIRC': 0.06,
                     'KSUB': 10.0, 'RDMSOL': 40.0, 'K0': 10.0, 'SOPE': 10.0, 'SM0': 0.42075}
>>> for smu_no, area, stu_no, percentage, soil_par in soildata:
...     print(smu_no, area, stu_no, percentage)
...
(9050131, 625000000, 9000282, 50)
(9050131, 625000000, 9000283, 50)










	
class pcse.db.cgms12.CropDataProvider(engine, grid_no, crop_no, campaign_year)

	Retrieves the crop parameters for the given grid_no, crop_no and year
from the tables CROP_CALENDAR, CROP_PARAMETER_VALUE and VARIETY_PARAMETER_VALUE.


	Parameters

	
	engine – SqlAlchemy engine object providing DB access


	grid_no – Integer grid ID, maps to the GRID_NO column in the table


	crop_no – Integer crop ID, maps to the CROP_NO column in the table


	campaign_year – Integer campaign year, maps to the YEAR column in the table.
The campaign year usually refers to the year of the harvest. Thus for crops
crossing calendar years, the start_date can be in the previous year.













	
class pcse.db.cgms12.STU_Suitability(engine, crop_no)

	Returns a set() of suitable STU’s for given crop_no.


	Parameters

	
	engine – SqlAlchemy engine object providing DB access


	crop_no – Integer crop ID, maps to the CROP_NO column in the table













	
class pcse.db.cgms12.SiteDataProvider(engine, grid_no, crop_no, campaign_year, stu_no)

	Provides the site data from the tables INITIAL_SOIL_WATER and SITE.


	Parameters

	
	engine – SqlAlchemy engine object providing DB access


	grid_no – Grid number (int)


	crop_no – Crop number (int)


	campaign_year – Campaign year (int)


	stu_no – soil typologic unit number (int)








Note that the parameter SSI (Initial surface storage) is
set to zero

Moreover, the start date of the water balance is defined by the
column GIVEN_STARTDATE_WATBAL. This value can be accessed as
an attribute start_date_waterbalance.







The CGMS14 database

The CGMS14 database is the database structure that is compatible with the 2015 BioMA implementation
of WOFOST. Note that the CGMS14 database structure is considerably different
from CGMS8 and CGMS12.



The NASA POWER database


	
class pcse.db.NASAPowerWeatherDataProvider(latitude, longitude, force_update=False, ETmodel='PM')

	WeatherDataProvider for using the NASA POWER database with PCSE


	Parameters

	
	latitude – latitude to request weather data for


	longitude – longitude to request weather data for


	force_update – Set to True to force to request fresh data
from POWER website.


	ETmodel – “PM”|”P” for selecting penman-monteith or Penman
method for reference evapotranspiration. Defaults to “PM”.








The NASA POWER database is a global database of daily weather data
specifically designed for agrometeorological applications. The spatial
resolution of the database is 0.5x0.5 degrees (as of 2018). It is
derived from weather station observations in combination with satellite
data for parameters like radiation.

The weather data is updated with a delay of about 3 months which makes
the database unsuitable for real-time monitoring, nevertheless the
POWER database is useful for many other studies and it is a major
improvement compared to the monthly weather data that were used with
WOFOST in the past.

For more information on the NASA POWER database see the documentation
at: http://power.larc.nasa.gov/common/AgroclimatologyMethodology/Agro_Methodology_Content.html

The NASAPowerWeatherDataProvider retrieves the weather from the
th NASA POWER API and does the necessary conversions to be compatible
with PCSE. After the data has been retrieved and stored, the contents
are dumped to a binary cache file. If another request is made for the
same location, the cache file is loaded instead of a full request to the
NASA Power server.

Cache files are used until they are older then 90 days. After 90 days
the NASAPowerWeatherDataProvider will make a new request to obtain
more recent data from the NASA POWER server. If this request fails
it will fall back to the existing cache file. The update of the cache
file can be forced by setting force_update=True.

Finally, note that any latitude/longitude within a 0.5x0.5 degrees grid box
will yield the same weather data, e.g. there is no difference between
lat/lon 5.3/52.1 and lat/lon 5.1/52.4. Nevertheless slight differences
in PCSE simulations may occur due to small differences in day length.








Convenience routines

These routines are there for conveniently starting a WOFOST simulation
for the demonstration and tutorials. They can serve as an example to
build your own script but have no further relevance.


	
pcse.start_wofost.start_wofost(grid=31031, crop=1, year=2000, mode='wlp', dsn=None)

	Provides a convenient interface for starting a WOFOST instance

If started with no arguments, the routine will connnect to the
demo database and initialize WOFOST for winter-wheat (cropno=1)
in Spain (grid_no=31031) for the year 2000 in water-limited
production (mode=’wlp’)


	Parameters

	
	grid – grid number, defaults to 31031


	crop – crop number, defaults to 1 (winter-wheat in the demo database)


	year – year to start, defaults to 2000


	mode – production mode (‘pp’ or ‘wlp’), defaults to ‘wlp’


	dsn – PCSE DB as SQLAlchemy data source name
defaults to None and in that case a connection to the demo
database will be established.








example:

>>> import pcse
>>> wofsim = pcse.start_wofost(grid=31031, crop=1, year=2000, 
...   mode='wlp')
>>> 
>>> wofsim
<pcse.models.Wofost71_WLP_FD at 0x35f2550>
>>> wofsim.run(days=300)
>>> wofsim.get_variable('tagp')
15261.752187075261











Miscelaneous utilities

Many miscelaneous for a variety of purposes such as the Arbitrary Function
Generator (AfGen) for linear interpolation and functions for calculating
Penman Penman/Monteith reference evapotranspiration,
the Angstrom equation and astronomical calculations such as day length.


	
pcse.util.reference_ET(DAY, LAT, ELEV, TMIN, TMAX, IRRAD, VAP, WIND, ANGSTA, ANGSTB, ETMODEL='PM', **kwargs)

	Calculates reference evapotranspiration values E0, ES0 and ET0.


The open water (E0) and bare soil evapotranspiration (ES0) are calculated with
the modified Penman approach, while the references canopy evapotranspiration is
calculated with the modified Penman or the Penman-Monteith approach, the latter
is the default.

Input variables:

DAY     -  Python datetime.date object                      -
LAT     -  Latitude of the site                          degrees
ELEV    -  Elevation above sea level                        m
TMIN    -  Minimum temperature                              C
TMAX    -  Maximum temperature                              C
IRRAD   -  Daily shortwave radiation                     J m-2 d-1
VAP     -  24-hour average vapour pressure                 hPa
WIND    -  24-hour average windspeed at 2 meter            m/s
ANGSTA  -  Empirical constant in Angstrom formula           -
ANGSTB  -  Empirical constant in Angstrom formula           -
ETMODEL -  Indicates if the canopy reference ET should     PM|P
           be calculated with the Penman-Monteith method
           (PM) or the modified Penman method (P)





Output is a tuple (E0, ES0, ET0):

E0      -  Penman potential evaporation from a free
           water surface [mm/d]
ES0     -  Penman potential evaporation from a moist
           bare soil surface [mm/d]
ET0     -  Penman or Penman-Monteith potential evapotranspiration from a
           crop canopy [mm/d]









Note

The Penman-Monteith algorithm is valid only for a reference canopy, and
therefore it is not used to calculate the reference values for bare soil and
open water (ES0, E0).

The background is that the Penman-Monteith model is basically a surface
energy balance where the net solar radiation is partitioned over latent and
sensible heat fluxes (ignoring the soil heat flux). To estimate this
partitioning, the PM method makes a connection between the surface
temperature and the air temperature. However, the assumptions
underlying the PM model are valid only when the surface where this
partitioning takes place is the same for the latent and sensible heat
fluxes.

For a crop canopy this assumption is valid because the leaves of the
canopy form the surface where both latent heat flux (through stomata)
and sensible heat flux (through leaf temperature) are partitioned.
For a soil, this principle does not work because when the soil is
drying the evaporation front will quickly disappear below the surface
and therefore the assumption that the partitioning surface is the
same does not hold anymore.

For water surfaces, the assumptions underlying PM do not hold
because there is no direct relationship between the temperature
of the water surface and the net incoming radiation as radiation is
absorbed by the water column and the temperature of the water surface
is co-determined by other factors (mixing, etc.). Only for a very
shallow layer of water (1 cm) the PM methodology could be applied.

For bare soil and open water the Penman model is preferred. Although it
partially suffers from the same problems, it is calibrated somewhat
better for open water and bare soil based on its empirical wind
function.

Finally, in crop simulation models the open water evaporation and
bare soil evaporation only play a minor role (pre-sowing conditions
and flooded rice at early stages), it is not worth investing much
effort in improved estimates of reference value for E0 and ES0.








	
pcse.util.penman_monteith(DAY, LAT, ELEV, TMIN, TMAX, AVRAD, VAP, WIND2)

	Calculates reference ET0 based on the Penman-Monteith model.


This routine calculates the potential evapotranspiration rate from
a reference crop canopy (ET0) in mm/d. For these calculations the
analysis by FAO is followed as laid down in the FAO publication
Guidelines for computing crop water requirements - FAO Irrigation
and drainage paper 56 [http://www.fao.org/docrep/X0490E/x0490e00.htm#Contents]




Input variables:

DAY   -  Python datetime.date object                   -
LAT   -  Latitude of the site                        degrees
ELEV  - Elevation above sea level                      m
TMIN  - Minimum temperature                            C
TMAX  - Maximum temperature                            C
AVRAD - Daily shortwave radiation                   J m-2 d-1
VAP   - 24-hour average vapour pressure               hPa
WIND2 - 24-hour average windspeed at 2 meter          m/s





Output is:



	ET0   - Penman-Monteith potential transpiration
	rate from a crop canopy                     [mm/d]













	
pcse.util.penman(DAY, LAT, ELEV, TMIN, TMAX, AVRAD, VAP, WIND2, ANGSTA, ANGSTB)

	Calculates E0, ES0, ET0 based on the Penman model.


This routine calculates the potential evapo(transpi)ration rates from
a free water surface (E0), a bare soil surface (ES0), and a crop canopy
(ET0) in mm/d. For these calculations the analysis by Penman is followed
(Frere and Popov, 1979;Penman, 1948, 1956, and 1963).
Subroutines and functions called: ASTRO, LIMIT.




Input variables:

DAY     -  Python datetime.date object                                    -
LAT     -  Latitude of the site                        degrees   
ELEV    -  Elevation above sea level                      m      
TMIN    -  Minimum temperature                            C
TMAX    -  Maximum temperature                            C      
AVRAD   -  Daily shortwave radiation                   J m-2 d-1 
VAP     -  24-hour average vapour pressure               hPa
WIND2   -  24-hour average windspeed at 2 meter          m/s
ANGSTA  -  Empirical constant in Angstrom formula         -
ANGSTB  -  Empirical constant in Angstrom formula         -





Output is a tuple (E0,ES0,ET0):

E0      -  Penman potential evaporation from a free water surface [mm/d]
ES0     -  Penman potential evaporation from a moist bare soil surface [mm/d]
ET0     -  Penman potential transpiration from a crop canopy [mm/d]










	
pcse.util.check_angstromAB(xA, xB)

	Routine checks validity of Angstrom coefficients.

This is the  python version of the FORTRAN routine ‘WSCAB’ in ‘weather.for’.






	
pcse.util.wind10to2(wind10)

	Converts windspeed at 10m to windspeed at 2m using log. wind profile






	
pcse.util.angstrom(day, latitude, ssd, cA, cB)

	Compute global radiation using the Angstrom equation.

Global radiation is derived from sunshine duration using the Angstrom
equation:
globrad = Angot * (cA + cB * (sunshine / daylength)


	Parameters

	
	day – day of observation (date object)


	latitude – Latitude of the observation


	ssd – Observed sunshine duration


	cA – Angstrom A parameter


	cB – Angstrom B parameter






	Returns

	the global radiation in J/m2/day










	
pcse.util.doy(day)

	Converts a date or datetime object to day-of-year (Jan 1st = doy 1)






	
pcse.util.limit(vmin, vmax, v)

	limits the range of v between min and max






	
pcse.util.daylength(day, latitude, angle=- 4, _cache={})

	Calculates the daylength for a given day, altitude and base.


	Parameters

	
	day – date/datetime object


	latitude – latitude of location


	angle – The photoperiodic daylength starts/ends when the sun
is angle degrees under the horizon. Default is -4 degrees.








Derived from the WOFOST routine ASTRO.FOR and simplified to include only
daylength calculation. Results are being cached for performance






	
pcse.util.astro(day, latitude, radiation, _cache={})

	python version of ASTRO routine by Daniel van Kraalingen.

This subroutine calculates astronomic daylength, diurnal radiation
characteristics such as the atmospheric transmission, diffuse radiation etc.


	Parameters

	
	day – date/datetime object


	latitude – latitude of location


	radiation – daily global incoming radiation (J/m2/day)








output is a namedtuple in the following order and tags:

DAYL      Astronomical daylength (base = 0 degrees)     h      
DAYLP     Astronomical daylength (base =-4 degrees)     h      
SINLD     Seasonal offset of sine of solar height       -      
COSLD     Amplitude of sine of solar height             -      
DIFPP     Diffuse irradiation perpendicular to
          direction of light                         J m-2 s-1 
ATMTR     Daily atmospheric transmission                -      
DSINBE    Daily total of effective solar height         s
ANGOT     Angot radiation at top of atmosphere       J m-2 d-1





Authors: Daniel van Kraalingen
Date   : April 1991

Python version
Author      : Allard de Wit
Date        : January 2011






	
pcse.util.merge_dict(d1, d2, overwrite=False)

	Merge contents of d1 and d2 and return the merged dictionary

Note:


	The dictionaries d1 and d2 are unaltered.


	If overwrite=False (default), a RuntimeError will be raised when
duplicate keys exist, else any existing keys in d1 are silently
overwritten by d2.









	
class pcse.util.Afgen(tbl_xy)

	Emulates the AFGEN function in WOFOST.


	Parameters

	tbl_xy – List or array of XY value pairs describing the function
the X values should be mononically increasing.





Returns the interpolated value provided with the 
absicca value at which the interpolation should take place.

example:

>>> tbl_xy = [0,0,1,1,5,10]
>>> f =  Afgen(tbl_xy)
>>> f(0.5)
0.5
>>> f(1.5)
2.125
>>> f(5)
10.0
>>> f(6)
10.0
>>> f(-1)
0.0










	
class pcse.util.ConfigurationLoader(config)

	Class for loading the model configuration from a PCSE configuration files


	Parameters

	config – string given file name containing model configuration










	
pcse.util.is_a_month(day)

	Returns True if the date is on the last day of a month.






	
pcse.util.is_a_dekad(day)

	Returns True if the date is on a dekad boundary, i.e. the 10th,
the 20th or the last day of each month






	
pcse.util.is_a_week(day, weekday=0)

	Default weekday is Monday. Monday is 0 and Sunday is 6






	
pcse.util.load_SQLite_dump_file(dump_file_name, SQLite_db_name)

	Build an SQLite database <SQLite_db_name> from dump file <dump_file_name>.
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Installing PCSE


Requirements and dependencies

PCSE is being developed on Ubuntu Linux 18.04 and Windows 10 using python 3.7 and python 3.8
As Python is a platform independent language, PCSE works equally well on Linux, Windows or Mac OSX.
Before installing PCSE, Python itself must be installed on your system which we will demonstrate
below. PCSE has a number of dependencies on other python packages which are the following:

- SQLAlchemy>=0.8.0
- PyYAML>=3.11
- xlrd>=0.9.3
- openpyxl>=3.0
- requests>=2.0.0
- pandas>=0.20
- traitlets-pcse==5.0.0.dev





The last package in the list is a modified version of the traitlets [https://traitlets.readthedocs.io/en/stable/] package which provides some
additional functionality used by PCSE.



Setting up your python environment

A convenient way to set up your python environment for PCSE is through the Anaconda [https://store.continuum.io/cshop/anaconda/] python distribution.
In the present PCSE Documentation all examples of installing and using PCSE refer to the Windows 10 platform.

First, we suggest you download and install the MiniConda [http://conda.pydata.org/miniconda.html] python distribution which provides a minimum
python environment that we will use to bootstrap a dedicated environment for PCSE. For the rest
of this guide we will assume that you use Windows 10 and install the
64bit miniconda for python 3 (Miniconda3-latest-Windows-x86_64.exe). The environment that
we will create contains not only the dependencies for PCSE, it also includes many other useful packages
such as IPython [https://ipython.org/], Pandas [http://pandas.pydata.org/] and the Jupyter notebook [https://jupyter.org/]. These packages will be used in the Getting Started section
as well.

After installing MiniConda you should open a command box and check that conda is installed properly:

(py3_pcse) C:\>conda info

         active environment : py3_pcse
        active env location : C:\data\Miniconda3\envs\py3_pcse
                shell level : 3
           user config file : C:\Users\wit015\.condarc
     populated config files : C:\Users\wit015\.condarc
              conda version : 4.9.2
        conda-build version : not installed
             python version : 3.8.5.final.0
           virtual packages : __win=0=0
                              __archspec=1=x86_64
           base environment : C:\data\Miniconda3  (writable)
               channel URLs : https://conda.anaconda.org/conda-forge/win-64
                              https://conda.anaconda.org/conda-forge/noarch
                              https://repo.anaconda.com/pkgs/main/win-64
                              https://repo.anaconda.com/pkgs/main/noarch
                              https://repo.anaconda.com/pkgs/r/win-64
                              https://repo.anaconda.com/pkgs/r/noarch
                              https://repo.anaconda.com/pkgs/msys2/win-64
                              https://repo.anaconda.com/pkgs/msys2/noarch
              package cache : C:\data\Miniconda3\pkgs
                              C:\Users\wit015\.conda\pkgs
                              C:\Users\wit015\AppData\Local\conda\conda\pkgs
           envs directories : C:\data\Miniconda3\envs
                              C:\Users\wit015\.conda\envs
                              C:\Users\wit015\AppData\Local\conda\conda\envs
                   platform : win-64
                 user-agent : conda/4.9.2 requests/2.24.0 CPython/3.8.5 Windows/10 Windows/10.0.18362
              administrator : False
                 netrc file : None
               offline mode : False





Now we will use a Conda environment file to recreate the python environment that we use to develop and run
PCSE. First you should download the conda environment file which comes in two flavours, an
environment for running PCSE on python 3 (downloads/py3_pcse.yml) and one for python 2
(downloads/py2_pcse.yml). It is strongly recommended to use the python 3 version as python 2
is not maintained anymore. Both environments include the Jupyter notebook and IPython which are
needed for running the getting started section and the example notebooks. Save the environment file
on a temporary location such as d:\temp\make_env\. We will now create a dedicated virtual environment
using the command conda env create and tell conda to use the environment file for python3 with the
option -f p3_pcse.yml as show below:

(C:\Miniconda3) D:\temp\make_env>conda env create -f py3_pcse.yml
Fetching package metadata .............
Solving package specifications: .
intel-openmp-2 100% |###############################| Time: 0:00:00   6.39 MB/s

... Lots of output here

Installing collected packages: traitlets-pcse
Successfully installed traitlets-pcse-5.0.0.dev0
#
# To activate this environment, use:
# > activate py3_pcse
#
# To deactivate an active environment, use:
# > deactivate
#
# * for power-users using bash, you must source
#





You can then activate your environment (note the addition of (py3_pcse) on your command prompt):

D:\temp\make_env>activate py3_pcse
Deactivating environment "C:\Miniconda3"...
Activating environment "C:\Miniconda3\envs\py3_pcse"...

(py3_pcse) D:\temp\make_env>







Installing PCSE

The easiest way to install PCSE is through the python package index (PyPI [https://pypi.python.org/pypi/PCSE]).
Installing from PyPI is mostly useful if you are interested in using the functionality
provided by PCSE in your own scripts, but are not interested in modifying or contributing to
PCSE itself. Installing from PyPI is done using the package installer pip which searches
the python package index for a package, downloads and installs it into your python
environment (example below for PCSE 5.4):

(py3_pcse) D:\temp\make_env>pip install pcse

Collecting pcse
  Downloading https://files.pythonhosted.org/packages/8c/92/d4444cce1c58e5a96f4d6dc9c0e042722f2136df24a2750352e7eb4ab053/PCSE-5.4.0.tar.gz (791kB)
    100% |¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦| 798kB 1.6MB/s
Requirement already satisfied: numpy>=1.6.0 in c:\miniconda3\envs\py3_pcse\lib\site-packages (from pcse) (1.15.1)
Requirement already satisfied: SQLAlchemy>=0.8.0 in c:\miniconda3\envs\py3_pcse\lib\site-packages (from pcse) (1.2.11)
Requirement already satisfied: PyYAML>=3.11 in c:\miniconda3\envs\py3_pcse\lib\site-packages (from pcse) (3.13)
Requirement already satisfied: xlrd>=0.9.3 in c:\miniconda3\envs\py3_pcse\lib\site-packages (from pcse) (1.1.0)
Requirement already satisfied: xlwt>=1.0.0 in c:\miniconda3\envs\py3_pcse\lib\site-packages (from pcse) (1.3.0)
Requirement already satisfied: requests>=2.0.0 in c:\miniconda3\envs\py3_pcse\lib\site-packages (from pcse) (2.19.1)
Requirement already satisfied: pandas>=0.20 in c:\miniconda3\envs\py3_pcse\lib\site-packages (from pcse) (0.23.4)
Requirement already satisfied: traitlets-pcse==5.0.0.dev in c:\miniconda3\envs\py3_pcse\lib\site-packages (from pcse) (5.0.0.dev0)
Requirement already satisfied: chardet<3.1.0,>=3.0.2 in c:\miniconda3\envs\py3_pcse\lib\site-packages (from requests>=2.0.0->pcse) (3.0.4)
Requirement already satisfied: idna<2.8,>=2.5 in c:\miniconda3\envs\py3_pcse\lib\site-packages (from requests>=2.0.0->pcse) (2.7)
Requirement already satisfied: certifi>=2017.4.17 in c:\miniconda3\envs\py3_pcse\lib\site-packages (from requests>=2.0.0->pcse) (2018.8.24)
Requirement already satisfied: urllib3<1.24,>=1.21.1 in c:\miniconda3\envs\py3_pcse\lib\site-packages (from requests>=2.0.0->pcse) (1.23)
Requirement already satisfied: python-dateutil>=2.5.0 in c:\miniconda3\envs\py3_pcse\lib\site-packages (from pandas>=0.20->pcse) (2.7.3)
Requirement already satisfied: pytz>=2011k in c:\miniconda3\envs\py3_pcse\lib\site-packages (from pandas>=0.20->pcse) (2018.5)
Requirement already satisfied: six in c:\miniconda3\envs\py3_pcse\lib\site-packages (from traitlets-pcse==5.0.0.dev->pcse) (1.11.0)
Requirement already satisfied: decorator in c:\miniconda3\envs\py3_pcse\lib\site-packages (from traitlets-pcse==5.0.0.dev->pcse) (4.3.0)
Requirement already satisfied: ipython-genutils in c:\miniconda3\envs\py3_pcse\lib\site-packages (from traitlets-pcse==5.0.0.dev->pcse) (0.2.0)
Building wheels for collected packages: pcse
  Running setup.py bdist_wheel for pcse ... done
  Stored in directory: C:\Users\wit015\AppData\Local\pip\Cache\wheels\2f\e6\2c\3952ff951dffea5ab2483892edcb7f9310faa319d050d3be6c
Successfully built pcse
twisted 18.7.0 requires PyHamcrest>=1.9.0, which is not installed.
mkl-random 1.0.1 requires cython, which is not installed.
mkl-fft 1.0.4 requires cython, which is not installed.
Installing collected packages: pcse
Successfully installed pcse-5.4.0





If you are wondering what the difference between pip and conda are than have a look
here [https://stackoverflow.com/questions/20994716/what-is-the-difference-between-pip-and-conda#20994790]

If you want to develop with or contribute to PCSE, than you should fork the PCSE
repository [https://github.com/ajwdewit/pcse] on GitHub and get a local copy of PCSE using git clone. See the help on github [https://help.github.com/]
and for Windows/Mac users the GitHub Desktop [https://desktop.github.com/] application.



Testing PCSE

To guarantee its integrity, the PCSE package includes a limited number of internal
tests that are installed automatically with PCSE. In addition, the PCSE
git repository has a large number of the tests in the test folder which do a more
thorough job in testing but will take a long time to complete (e.g. an hour or more).
The internal tests present users with a quick way to ensure that the output produced
by the different components matches with the expected outputs. While the full test
suite is useful for developers only.

Test data for the internal tests can be found in the pcse.tests.test_data package as
well as in an SQLite database (pcse.db). This database can be found under
.pcse in your home folder and will be automatically created when importing
PCSE for the first time. When you delete the database file manually it will be
recreated next time you import PCSE.

For running the internal tests of the PCSE package we need to start python and import pcse:

(py3_pcse) D:\temp\make_env>python
Python 3.6.5 (default, Aug 14 2018, 19:12:50) [MSC v.1900 32 bit (Intel)] :: Anaconda, Inc. on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import pcse
Building PCSE demo database at: C:\Users\wit015\.pcse\pcse.db ... OK
>>>





Next, the tests can be executed by calling the test() function at the top of the package:

.. code-block:: doscon






>>> pcse.test()
runTest (pcse.tests.test_abioticdamage.Test_FROSTOL) ... ok
runTest (pcse.tests.test_partitioning.Test_DVS_Partitioning) ... ok
runTest (pcse.tests.test_evapotranspiration.Test_PotentialEvapotranspiration) ... ok
runTest (pcse.tests.test_evapotranspiration.Test_WaterLimitedEvapotranspiration1) ... ok
runTest (pcse.tests.test_evapotranspiration.Test_WaterLimitedEvapotranspiration2) ... ok
runTest (pcse.tests.test_respiration.Test_WOFOSTMaintenanceRespiration) ... ok
runTest (pcse.tests.test_penmanmonteith.Test_PenmanMonteith1) ... ok
runTest (pcse.tests.test_penmanmonteith.Test_PenmanMonteith2) ... ok
runTest (pcse.tests.test_penmanmonteith.Test_PenmanMonteith3) ... ok
runTest (pcse.tests.test_penmanmonteith.Test_PenmanMonteith4) ... ok
runTest (pcse.tests.test_agromanager.TestAgroManager1) ... ok
runTest (pcse.tests.test_agromanager.TestAgroManager2) ... ok
runTest (pcse.tests.test_agromanager.TestAgroManager3) ... ok
runTest (pcse.tests.test_agromanager.TestAgroManager4) ... ok
runTest (pcse.tests.test_agromanager.TestAgroManager5) ... ok
runTest (pcse.tests.test_agromanager.TestAgroManager6) ... ok
runTest (pcse.tests.test_agromanager.TestAgroManager7) ... ok
runTest (pcse.tests.test_agromanager.TestAgroManager8) ... ok
runTest (pcse.tests.test_wofost.TestWaterlimitedPotato) ... ok
runTest (pcse.tests.test_wofost.TestPotentialSunflower) ... ok
runTest (pcse.tests.test_wofost.TestWaterlimitedWinterRapeseed) ... ok
runTest (pcse.tests.test_wofost.TestPotentialSpringBarley) ... ok
runTest (pcse.tests.test_wofost.TestPotentialGrainMaize) ... ok
runTest (pcse.tests.test_wofost.TestWaterlimitedSpringBarley) ... ok
runTest (pcse.tests.test_wofost.TestPotentialWinterRapeseed) ... ok
runTest (pcse.tests.test_wofost.TestPotentialWinterWheat) ... ok
runTest (pcse.tests.test_wofost.TestWaterlimitedSunflower) ... ok
runTest (pcse.tests.test_wofost.TestWaterlimitedWinterWheat) ... ok
runTest (pcse.tests.test_wofost.TestWaterlimitedGrainMaize) ... ok
runTest (pcse.tests.test_wofost.TestPotentialPotato) ... ok
runTest (pcse.tests.test_wofost80.TestWOFOST80_Potential_WinterWheat) ... ok
runTest (pcse.tests.test_wofost80.TestWOFOST80_WaterLimited_WinterWheat) ... ok





Ran 32 tests in 39.809s

OK




If the model output matches the expected output the test will report ‘OK’,
otherwise an error will be produced with a detailed traceback on where the
problem occurred. Note that the results may deviate from the output above
when tests were added or removed.

Moreover, SQLAlchemy may complain with a warning that can be safely ignored:

C:\Miniconda3\envs\py3_pcse\lib\site-packages\sqlalchemy\sql\sqltypes.py:603: SAWarning:
Dialect sqlite+pysqlite does *not* support Decimal objects natively, and SQLAlchemy must
convert from floating point - rounding errors and other issues may occur. Please consider
storing Decimal numbers as strings or integers on this platform for lossless storage.









            

          

      

      

    

  

    
      
          
            
  
Background of PCSE


Crop models in Wageningen

The Python Crop Simulation Environment was developed because of a need to re-implement crop simulation
models that were developed in Wageningen. Many of the Wageningen crop simulation models were originally developed in
FORTRAN77 or using the FORTRAN Simulation Translator (FST). Although this approach has yielded high quality models
with high numerical performance, the inherent limitations of models written in FORTRAN is also becoming increasingly
evident:


	The structure of the models is often rather monolithic and the different parts are very tightly coupled.
Replacing parts of the model with another simulation approach is not easy.


	The models rely on file-based I/O which is difficult to change. For example, interfacing with databases
is complicated in FORTRAN.


	In general, with low-level languages like FORTRAN, simple things already take many lines of code and mistakes
are easily made, particularly by agronomists and crop scientist that have limited experience in developing or
adapting software.




To overcome many of the limitations above, the Python Crop Simulation Environment (PCSE) was developed. It provides
an environment for developing simulation models as well as a number of implementations of crop simulation models.
PCSE is written in pure Python code which makes it more flexible, easier to modify and extensible allowing easy
interfacing with databases, graphical user interfaces, visualization tools and numerical/statistical packages. PCSE has
several interesting features:


	Implementation in pure Python. The core system has a small number of dependencies outside the Python standard
library. However many data providers require certain packages to be installed. Most of these can be automatically
installed from the Python Package Index (PyPI) (SQLAlchemy, PyYAML, xlrd, openpyxl, requests) and in
processing of the output of models is most easily done with pandas DataFrames.


	Modular design allowing you to add or change components relatively quickly with a simple but powerful approach
to communicate variables between modules.


	Similar to FST, it enforces good model design by explicitly separating parameters, rate variables and state
variables. Moreover PCSE takes care of the module initialization, calculation of rates of changes, updating
of state variables and actions needed to finalize the simulation.


	Input/Output is completely separated from the simulation model itself. Therefore PCSE models can easily
read from and write to text files, databases and scientific formats such as HDF or NetCDF. Moreover, PCSE
models can be easily embedded in, for example, docker containers to build a web API around a crop model.


	Built-in testing of program modules ensuring integrity of the system






Why Python

PCSE was first and foremost developed from a scientific need, to be able to quickly adapt models and test ideas.
In science, Python is quickly becoming a tool for implementing algorithms, visualization and explorative analysis
due to its clear syntax and ease of use. An additional advantage is that the C implementation of Python
can be easily interfaced with routines written in FORTRAN and therefore many FORTRAN routines can be reused by
simulation models written with PCSE.

Many packages exist for numeric analysis (e.g. NumPy, SciPy),
visualisation (e.g. MatPlotLib, Chaco), distributed computing (e.g. IPython, pyMPI) and interfacing with databases
(e.g. SQLAlchemy). Moreover, for statistical analyses an interface with R-project can be established through
Rpy or Rserve. Finally, Python is an Open Source interpreted programming language that
runs on almost any hardware and operating system.

Given the above considerations, it was quickly recognized that Python was a good choice. Although, PCSE was
developed for scientific purposes, it has already been implemented for tasks in production environments and has been
embedded in container-based web services.



History of PCSE

Up until version 4.1, PCSE was called “PyWOFOST” as its primary goal was to provide a Python
implementation of the WOFOST crop simulation model.
However, as the system has grown it has become evident that the system can be used to implement, extend or
hybridize (crop) simulation models. Therefore, the name “PyWOFOST” became too narrow and the name Python Crop
Simulation Environment was selected in analog with the FORTRAN Simulation Environment (FSE).



Limitations of PCSE

PCSE also has its limitations, in fact there are several:


	Speed: flexibility comes a at a price; PCSE is considerably slower than equivalent models written in FORTRAN or
another compiled language.


	The simulation approach in PCSE is currently limited to rectangular (Euler) integration with a fixed daily
time-step. Although the internal time-step of modules can be made more fine-grained if needed.


	No graphical user interface. However the lack of a user interface is partly compensated by using PCSE with the
pandas [http://pandas.pydata.org/] package and the Jupyter notebook [https://jupyter.org/].
PCSE output can be easily converted to a pandas DataFrame which can be used to display charts in an Jupyter
notebook. See also my collection of notebooks with examples using PCSE [https://github.com/ajwdewit/pcse_notebooks]






License

The source code of PCSE is made available under the European Union
Public License (EUPL), Version 1.2 or as soon they will be approved by the
European Commission - subsequent versions of the EUPL (the “Licence”).
You may not use this work except in compliance with the Licence. You may obtain
a copy of the Licence at: https://joinup.ec.europa.eu/community/eupl/og_page/eupl

The PCSE package contains some modules that have been taken and/or modified
from other open source projects:


	the pydispatch module obtained from http://pydispatcher.sourceforge.net/
which is distributed under a BSD style license.


	The traitlets module which was taken and adapted from the
IPython project (https://ipython.org/) which are distributed under a
BSD style license. A PCSE specific version of traitlets was created
and is available here [https://pypi.org/project/traitlets-pcse/]




See the project pages of both projects for exact license terms.





            

          

      

      

    

  

    
      
          
            
  
Getting started

This guide will help you install PCSE as well as provide
some examples to get you started with modelling. The examples are currently focused on applying
the WOFOST and LINTUL3 crop simulation models, although other crop simulation models may become available within
PCSE in the future.



An interactive PCSE/WOFOST session

The easiest way to demonstrate PCSE is to import WOFOST from PCSE and run it from
an interactive Python session. We will be using the start_wofost() script that
connects to a the demo database which contains meteorologic data, soil data,
crop data and management data for a grid location in South-Spain.


Initializing PCSE/WOFOST and advancing model state

Let’s start a WOFOST object for modelling winter-wheat (crop=1) on a
location in South-Spain (grid 31031) for the year 2000 under water-limited
conditions for a freely draining soil (mode=’wlp’):

>>> wofost_object = pcse.start_wofost(grid=31031, crop=1, year=2000, mode='wlp')
>>> type(wofost_object)
<class 'pcse.models.Wofost72_WLP_FD'>





You have just successfully initialized a PCSE/WOFOST object in the Python
interpreter, which is in its initial state and waiting to do some simulation. We
can now advance the model state for example with 1 day:

>>> wofost_object.run()





Advancing the crop simulation with only 1 day, is often not so useful so the
number of days to simulate can be specified as well:

>>> wofost_object.run(days=10)







Getting information about state and rate variables

Retrieving information about the calculated model states or rates
can be done with the get_variable() method on a PCSE object.
For example, to retrieve the leaf area index value in the current
model state you can do:

>>> wofost_object.get_variable('LAI')
0.28708095263317146
>>> wofost_object.run(days=25)
>>> wofost_object.get_variable('LAI')
1.5281215808337203





Showing that after 11 days the LAI value is 0.287. When we increase time
with another 25 days, the LAI increases to 1.528. The get_variable method
can retrieve any state or rate variable that is defined somewhere in the
model. Finally, we can finish the crop season by letting it run until the
model terminates because the crop reaches maturity or the harvest date:

>>> wofost_object.run_till_terminate()





Next we retrieve the simulation results at each time-step (‘output’) of the
simulation:

>>> output = wofost_object.get_output()





We can now use the pandas package to turn the simulation output into a
dataframe which is much easier to handle and can be exported to different
file types. For example an excel file which should look like this
downloads/wofost_results.xls:

>>> import pandas as pd
>>> df = pd.DataFrame(output)
>>> df.to_excel("wofost_results.xls")





Finally, we can retrieve the results at the end of the crop cycle (summary results)
and have a look at these as well:

>>> summary_output = wofost_object.get_summary_output()
>>> msg = "Reached maturity at {DOM} with total biomass {TAGP} kg/ha "\
"and a yield of {TWSO} kg/ha."
>>> print(msg.format(**summary_output[0]))
Reached maturity at 2000-05-31 with total biomass 15261.7521735 kg/ha and a yield of 7179.80460783 kg/ha.

>>> summary_output
[{'CTRAT': 22.457536342947606,
  'DOA': datetime.date(2000, 3, 28),
  'DOE': datetime.date(2000, 1, 1),
  'DOH': None,
  'DOM': datetime.date(2000, 5, 31),
  'DOS': None,
  'DOV': None,
  'DVS': 2.01745939841335,
  'LAIMAX': 6.132711275237731,
  'RD': 60.0,
  'TAGP': 15261.752173534584,
  'TWLV': 3029.3693107257263,
  'TWRT': 1546.990661062695,
  'TWSO': 7179.8046078262705,
  'TWST': 5052.578254982587}]






Running PCSE/WOFOST with custom input data

For running PCSE/WOFOST (and PCSE models in general) with your own data sources you need three different types of
inputs:


	Model parameters that parameterize the different model components. These parameters usually
consist of a set of crop parameters (or multiple sets in case of crop rotations), a set of soil parameters
and a set of site parameters. The latter provide ancillary parameters that are specific for a location.


	Driving variables represented by weather data which can be derived from various sources.


	Agromanagement actions which specify the farm activities that will take place on the field that is simulated
by PCSE.




For the second example we will run a simulation for sugar beet in
Wageningen (Netherlands) and we will read the input data step by step from
several different sources instead of using the pre-configured start_wofost()
script. For the example we will assume that data files are in the directory
D:\userdata\pcse_examples and all the parameter files needed can be
found by unpacking this zip file downloads/quickstart_part2.zip.

First we will import the necessary modules and define the data directory:

>>> import os
>>> import pcse
>>> import matplotlib.pyplot as plt
>>> data_dir = r'D:\userdata\pcse_examples'








Crop parameters

The crop parameters consist of parameter names and the
corresponding parameter values that are needed to parameterize the
components of the crop simulation model. These are
crop-specific values regarding phenology, assimilation, respiration,
biomass partitioning, etc. The parameter file for sugar beet
is taken from the crop files in the WOFOST Control Centre [http://www.wageningenur.nl/wofost].

The crop parameters for many models in
Wageningen are often provided in the CABO format that could be read
with the TTUTIL [http://edepot.wur.nl/17847] FORTRAN library. PCSE
tries to be backward compatible as much as possible and provides the
CABOFileReader for reading parameter files in CABO format.
the CABOFileReader returns a dictionary with the parameter name/value pairs:

>>> from pcse.fileinput import CABOFileReader
>>> cropfile = os.path.join(data_dir, 'sug0601.crop')
>>> cropdata = CABOFileReader(cropfile)
>>> print(cropdata)





Printing the cropdata dictionary gives you a listing of the header and
all parameters and their values.



Soil parameters

The soildata dictionary provides the parameter name/value pairs related
to the soil type and soil physical properties. The number of parameters is
variable depending on the soil water balance type that is used for the
simulation. For this example, we will use the water balance for freely
draining soils and use the soil file for medium fine sand: ec3.soil.
This file is also taken from the soil files in the WOFOST Control Centre [http://www.wageningenur.nl/wofost]

>>> soilfile = os.path.join(data_dir, 'ec3.soil')
>>> soildata = CABOFileReader(soilfile)







Site parameters

The site parameters provide ancillary parameters that are not related to
the crop or the soil. Examples are the initial conditions of
the water balance such as the initial soil moisture content (WAV) and
the initial and maximum surface storage (SSI, SSMAX). Also the
atmospheric CO2 concentration is a typical site parameter.
For the moment, we can define these parameters directly on the Python commandline
as a simple python dictionary. However, it is more convenient to use the
WOFOST71SiteDataProvider that documents the
site parameters and provides sensible defaults:

>>> from pcse.util import WOFOST71SiteDataProvider
>>> sitedata = WOFOST71SiteDataProvider(WAV=100, CO2=360)
>>> print(sitedata)
{'SMLIM': 0.4, 'NOTINF': 0, 'CO2': 360.0, 'SSI': 0.0, 'SSMAX': 0.0, 'IFUNRN': 0, 'WAV': 100.0}





Finally, we need to pack the different sets of parameters into one variable
using the ParameterProvider. This is needed because PCSE expects one
variable that contains all parameter values. Using this approach has the
additional advantage that parameters value can be easily overridden in case
of running multiple simulations with slightly different parameter values:

>>> from pcse.base import ParameterProvider
>>> parameters = ParameterProvider(cropdata=cropdata, soildata=soildata, sitedata=sitedata)







AgroManagement

The agromanagement inputs provide the start date of the agricultural campaign,
the start_date/start_type of the crop simulation, the end_date/end_type of the crop
simulation and the maximum duration of the crop simulation. The latter is
included to avoid unrealistically long simulations for example as a results of
a too high temperature sum requirement.

The agromanagement inputs are defined with a special syntax called YAML [http://yaml.org/] which allows
to easily create more complex structures which is needed for defining the agromanagement.
The agromanagement file for sugar beet in Wageningen sugarbeet_calendar.agro can be read with
the YAMLAgroManagementReader:

>>> from pcse.fileinput import YAMLAgroManagementReader
>>> agromanagement_file = os.path.join(data_dir, 'sugarbeet_calendar.agro')
>>> agromanagement = YAMLAgroManagementReader(agromanagement_file)
>>> print(agromanagement)
 !!python/object/new:pcse.fileinput.yaml_agro_loader.YAMLAgroManagementReader
 listitems:
 - 2000-01-01:
     CropCalendar:
       crop_name: sugarbeet
       variety_name: sugar_beet_601
       crop_start_date: 2000-04-05
       crop_start_type: emergence
       crop_end_date: 2000-10-20
       crop_end_type: harvest
       max_duration: 300
     StateEvents: null
     TimedEvents: null







Daily weather observations

Daily weather variables are needed for running the simulation. There are several
data providers in PCSE for reading weather data, see the section on
weather data providers to get an overview.

For this example we will use the weather data from the NASA Power database
which provides global weather data with a spatial resolution of 0.5 degree (~50 km).
We will retrieve the data from the Power database for the location of Wageningen.
Note that it can take around 30 seconds
to retrieve the weather data from the NASA Power server the first time:

>>> from pcse.db import NASAPowerWeatherDataProvider
>>> wdp = NASAPowerWeatherDataProvider(latitude=52, longitude=5)
>>> print(wdp)
Weather data provided by: NASAPowerWeatherDataProvider
--------Description---------
NASA/POWER SRB/FLASHFlux/MERRA2/GEOS 5.12.4 (FP-IT) 0.5 x 0.5 Degree Daily Averaged Data
----Site characteristics----
Elevation:    4.7
Latitude:  52.000
Longitude:  5.000
Data available for 1983-07-01 - 2018-09-16
Number of missing days: 8







Importing, initializing and running a PCSE model

Internally, PCSE uses a simulation engine to run a crop simulation. This
engine takes a configuration file that specifies the components for the crop,
the soil and the agromanagement that need to be used for the simulation.
So any PCSE model can be started by importing the engine and initializing
it with a given configuration file and the corresponding parameters, weather
data and agromanagement.

However, as many users of PCSE only need a particular configuration (for
example the WOFOST model for potential production), preconfigured Engines
are provided in pcse.models. For the sugarbeet example we will import
the WOFOST model for water-limited simulation under freely draining soil
conditions:

>>> from pcse.models import Wofost71_WLP_FD
>>> wofsim = Wofost71_WLP_FD(parameters, wdp, agromanagement)





We can then run the simulation and show some final results such as the anthesis and
harvest dates (DOA, DOH), total biomass (TAGP) and maximum LAI (LAIMAX).
Next, we retrieve the time series of daily simulation output using the get_output()
method on the WOFOST object:

>>> wofsim.run_till_terminate()
>>> output = wofsim.get_output()
>>> len(output)
294





As the output is returned as a list of dictionaries, we need to unpack these variables
from the list of output:

>>> varnames = ["day", "DVS", "TAGP", "LAI", "SM"]
>>> tmp = {}
>>> for var in varnames:
>>>     tmp[var] = [t[var] for t in output]





Finally, we can generate some figures of WOFOST variables such as the
development (DVS), total biomass (TAGP), leaf area
index (LAI) and root-zone soil moisture (SM) using the MatPlotLib [http://matplotlib.org/] plotting package:

>>> day = tmp.pop("day")
>>> fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(10,8))
>>> for var, ax in zip(["DVS", "TAGP", "LAI", "SM"], axes.flatten()):
>>>     ax.plot_date(day, tmp[var], 'b-')
>>>     ax.set_title(var)
>>> fig.autofmt_xdate()
>>> fig.savefig('sugarbeet.png')





This should generate a figure of the simulation results as shown below. The complete Python
script for this examples can be downloaded here downloads/quickstart_demo2.py

[image: _images/sugarbeet.png]

Running a simulation with PCSE/LINTUL3

The LINTUL model (Light INTerception and UtiLisation) is a simple generic crop model, which simulates dry
matter production as the result of light interception and utilization with a constant light use efficiency.
In PCSE the LINTUL family of models has been implemented including the LINTUL3 model which is used for
simulation of crop production under water-limited and nitrogen-limited conditions.

For the third example, we will use LINTUL3 for simulating spring-wheat in the Netherlands under water-limited
and nitrogen-limited conditions. We will again assume that data files are in the directory
D:\userdata\pcse_examples and all the parameter files needed can be
found by unpacking this zip file downloads/quickstart_part3.zip. Note that this guide is also available
as an IPython notebook: downloads/running_LINTUL3.ipynb.

First we will import the necessary modules and define the data directory. We also assume that you have the
matplotlib [http://matplotlib.org/], pandas [http://pandas.pydata.org] and PyYAML [http://pyyaml.org/wiki/PyYAML] packages installed on your system.:

>>> import os
>>> import pcse
>>> import matplotlib.pyplot as plt
>>> import pandas as pd
>>> import yaml
>>> data_dir = r'D:\userdata\pcse_examples'





Similar to the previous example, for running the PCSE/LINTUL3 model we need to define the tree types of inputs
(parameters, weather data and agromanagement).




Reading model parameters

Model parameters can be easily read from the input files using the PCSEFileReader as we have seen
in the previous example:

>>> from pcse.fileinput import PCSEFileReader
>>> crop = PCSEFileReader(os.path.join(data_dir, "lintul3_springwheat.crop"))
>>> soil = PCSEFileReader(os.path.join(data_dir, "lintul3_springwheat.soil"))
>>> site = PCSEFileReader(os.path.join(data_dir, "lintul3_springwheat.site"))





However, PCSE models expect a single set of parameters and therefore they need to be combined using the
ParameterProvider:

>>> from pcse.base import ParameterProvider
>>> parameterprovider = ParameterProvider(soildata=soil, cropdata=crop, sitedata=site)







Reading weather data

For reading weather data we will use the ExcelWeatherDataProvider. This WeatherDataProvider uses nearly the same
file format as is used for the CABO weather files but stores its data in an MicroSoft Excel file which makes the
weather files easier to create and update:

>>> from pcse.fileinput import ExcelWeatherDataProvider
>>> weatherdataprovider = ExcelWeatherDataProvider(os.path.join(data_dir, "nl1.xlsx"))
>>> print(weatherdataprovider)
Weather data provided by: ExcelWeatherDataProvider
--------Description---------
Weather data for:
Country: Netherlands
Station: Wageningen, Location Haarweg
Description: Observed data from Station Haarweg in Wageningen
Source: Meteorology and Air Quality Group, Wageningen University
Contact: Peter Uithol
----Site characteristics----
Elevation:    7.0
Latitude:  51.970
Longitude:  5.670
Data available for 2004-01-02 - 2008-12-31
Number of missing days: 32







Defining agromanagement

Defining agromanagement needs a bit more explanation because agromanagement is a relatively
complex piece of PCSE. The agromanagement definition for PCSE is written in a format called YAML [http://yaml.org/] and
for the current example looks like this:

Version: 1.0.0
AgroManagement:
- 2006-01-01:
    CropCalendar:
        crop_name: wheat
        variety_name: spring-wheat
        crop_start_date: 2006-03-31
        crop_start_type: emergence
        crop_end_date: 2006-08-20
        crop_end_type: earliest
        max_duration: 300
    TimedEvents:
    -   event_signal: apply_n
        name:  Nitrogen application table
        comment: All nitrogen amounts in g N m-2
        events_table:
        - 2006-04-10: {amount: 10, recovery: 0.7}
        - 2006-05-05: {amount:  5, recovery: 0.7}
    StateEvents: null





The agromanagement definition starts with Version: indicating the version number of the agromanagement file
while the actual definition starts after the label AgroManagement:. Next a date must be provided which sets the
start date of the campaign (and the start date of the simulation). Each campaign is defined by zero or one
CropCalendars and zero or more TimedEvents and/or StateEvents. The CropCalendar defines the crop name,
variety_name, date of sowing, date of harvesting, etc. while the Timed/StateEvents define actions that are
either connected to a date or to a model state.

In the current example, the campaign starts on 2006-01-01, there is a crop calendar for spring-wheat starting on
2006-03-31 with a harvest date of 2006-08-20 or earlier if the crop reaches maturity before this date.
Next there are timed events defined for applying N fertilizer at 2006-04-10 and 2006-05-05. The current example
has no state events. For a thorough description of all possibilities see the section on AgroManagement in the
Reference Guide (Chapter 3).

Loading the agromanagement definition must by done with the YAMLAgroManagementReader:

>>> from pcse.fileinput import YAMLAgroManagementReader
>>> agromanagement = YAMLAgroManagementReader(os.path.join(data_dir, "lintul3_springwheat.amgt"))
>>> print(agromanagement)
!!python/object/new:pcse.fileinput.yaml_agro_loader.YAMLAgroManagementReader
listitems:
- 2006-01-01:
    CropCalendar:
      crop_end_date: 2006-10-20
      crop_end_type: earliest
      crop_name: wheat
      variety_name: spring-wheat
      crop_start_date: 2006-03-31
      crop_start_type: emergence
      max_duration: 300
    StateEvents: null
    TimedEvents:
    - comment: All nitrogen amounts in g N m-2
      event_signal: apply_n
      events_table:
      - 2006-04-10:
          amount: 10
          recovery: 0.7
      - 2006-05-05:
          amount: 5
          recovery: 0.7
      name: Nitrogen application table







Starting and running the LINTUL3 model

We have now all parameters, weather data and agromanagement information available to start the LINTUL3 model:

>>> from pcse.models import LINTUL3
>>> lintul3 = LINTUL3(parameterprovider, weatherdataprovider, agromanagement)
>>> lintul3.run_till_terminate()





Next, we can easily get the output from the model using the get_output() method and turn it into a pandas DataFrame:

>>> output = lintul3.get_output()
>>> df = pd.DataFrame(output).set_index("day")
>>> df.tail()
                 DVS       LAI     NUPTT       TAGBM     TGROWTH  TIRRIG  \
day
2006-07-28  1.931748  0.384372  4.705356  560.213626  626.053663       0
2006-07-29  1.953592  0.368403  4.705356  560.213626  626.053663       0
2006-07-30  1.974029  0.353715  4.705356  560.213626  626.053663       0
2006-07-31  1.995291  0.339133  4.705356  560.213626  626.053663       0
2006-08-01  2.014272  0.326169  4.705356  560.213626  626.053663       0

               TNSOIL  TRAIN  TRAN  TRANRF  TRUNOF      TTRAN        WC  \
day
2006-07-28  11.794644  375.4     0       0       0  71.142104  0.198576
2006-07-29  11.794644  376.3     0       0       0  71.142104  0.197346
2006-07-30  11.794644  376.3     0       0       0  71.142104  0.196293
2006-07-31  11.794644  381.6     0       0       0  71.142104  0.198484
2006-08-01  11.794644  381.7     0       0       0  71.142104  0.197384

                 WLVD       WLVG        WRT         WSO         WST
day
2006-07-28  88.548865  17.687197  16.649830  184.991591  268.985974
2006-07-29  89.284828  16.951234  16.150335  184.991591  268.985974
2006-07-30  89.962276  16.273785  15.665825  184.991591  268.985974
2006-07-31  90.635216  15.600845  15.195850  184.991591  268.985974
2006-08-01  91.233828  15.002234  14.739974  184.991591  268.985974





Finally, we can visualize the results from the pandas DataFrame with a few commands if your
environment supports plotting:

>>> fig, axes = plt.subplots(nrows=9, ncols=2, figsize=(16,40))
>>> for key, axis in zip(df.columns, axes.flatten()):
>>>     df[key].plot(ax=axis, title=key)
>>> fig.autofmt_xdate()
>>> fig.savefig(os.path.join(data_dir, "lintul3_springwheat.png"))





[image: _images/lintul3_springwheat.png]
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