
PCSE Documentation
Release 5.5

Allard de Wit

Mar 31, 2024

CONTENTS

1 What’s new 3
1.1 An overview of new features and fixes . 3

2 Crop models Available in PCSE 7
2.1 Models available in PCSE . 7

3 User guide 9
3.1 User Guide . 9

4 Reference guide 29
4.1 Reference Guide . 29

5 Code documentation 51
5.1 Code documentation . 51

6 Indices and tables 139

Python Module Index 141

Index 143

i

ii

PCSE Documentation, Release 5.5

PCSE (Python Crop Simulation Environment) is a Python package for building crop simulation models,
in particular the crop models developed in Wageningen (Netherlands). PCSE provides the environment
to implement crop simulation models, the tools for reading ancillary data (weather, soil, agromanage-
ment) and the components for simulating biophysical processes such as phenology, respiration and evap-
otranspiration. PCSE also includes implementations of the WOFOST LINGRA and LINTUL3 crop and
grassland simulation models which have been widely used around the world. For example, WOFOST
has been implemented in the MARS crop yield forecasting system which is used operationally for crop
monitoring and yield prediction in Europe and beyond.

Originally, models developed in Wageningen were often written using FORTRAN or the FORTRAN
Simulation Environment (FSE). Both are very good tools, but they have become somewhat outdated
and are difficult to integrate with many of the great tools that are available nowadays (XML, databases,
web, etc). Like so many other software packages, PCSE was developed to facilitate my own research
work. I wanted something that was more easy to work with, more interactive and more flexible while
still implementing the sound computational approach of FSE. For this reason PCSE was developed in
Python hsa become an important programming language for scientific purposes.

Traditionally, crop simulation models in Wageningen have been provided including the full source code.
PCSE is no exception and its source code is open and licensed under the European Union Public Li-
cense. PCSE runs on Python 2.7+ and 3.2+ and has a decent test coverage of the implementation of the
biophysical processes.

CONTENTS 1

http://www.wageningenur.nl/wofost
https://edepot.wur.nl/336784
https://models.pps.wur.nl/system/files/LINTUL-N-Shibu-article_1.pdf

PCSE Documentation, Release 5.5

2 CONTENTS

CHAPTER

ONE

WHAT’S NEW

1.1 An overview of new features and fixes

1.1.1 What’s new in PCSE 5.5

PCSE 5.5 has the following new features:

• WOFOST version 8.0 (beta) has been included which has variants for potential (PP), water-limited
(WLP) and nutrient + water-limited (NWLP) production. Note that dynamics for N/P/K are in-
cluded in all model variants but for the PP and WLP variants the supply of N/P/K is assumed to
be unlimited. Note that this a beta version because testing of the N/P/K limited growth against
experimental data has so far been limited. Nevertheless, the dynamics for N/P/K are based on
well known principles from other models and rely on the concept of dilution curves that define the
maximum, critical and residual N/P/K concentration in the crop.

• A full implementation of the LINGRA and LINGRA-N grassland simulation models are now in-
cluded. This model allows to make estimates of productivity of rye grass.

• WOFOST 7.1 has been upgraded to 7.2, this is mainly to be consistent with the updated sys-
tem description for WOFOST at https://wofost.readthedocs.io. Old code that relies on importing
WOFOST 7.1 will keep working though.

• The WOFOST 7.2 phenology module can now be imported as a standalone model. This is useful
when calibration is limited to phenology as it greatly increases the model performance.

• The FAO Water Requirement Satisfaction Index is included as a model.

1.1.2 What’s new in PCSE 5.4

PCSE 5.4 has the following new features:

• PCSE is now fully compatible with python3 (>3.4) while still remaining compatibility with python
2.7.14

• The NASAPOWERWeatherDataProvider has been upgraded to take the new API into account

3

https://wofost.readthedocs.io

PCSE Documentation, Release 5.5

1.1.3 What’s new in PCSE 5.3

PCSE 5.3 has the following new features:

• The WOFOST crop parameters have been reorganized into a new data structure and file format (e.g.
YAML) and are available from github. PCSE 5.3 provides the YAMLCropDataProvider to read
the new parameters files. The YAMLCropDataProvider works together with the AgroManager for
specifying parameter sets for crop rotations.

• A new CGMSEngine that mimics the behaviour of the classic CGMS. This means the engine can
be run up till a specified date. When maturity or harvest is reached, the value of all state variables
will be retained and kept constant until the specified date is reached.

• Caching was added to the CGMS weather data providers, this is particularly useful for repeated
runs as the weather data only have to be retrieved once from the CGMS database.

Some bugs have been fixed:

• The NASA POWER database moved from http:// to https:// so an update of the NASAPowerWeath-
erDataProvider was needed.

• When running crop rotations it was found that python did not garbage collect the crop simulation
objects quick enough. This is now fixed with an explicit call to the garbage collector.

1.1.4 What’s new in PCSE 5.2

PCSE version 5.2 brings the following new features:

• The LINTUL3 model has been implemented in PCSE. LINTUL3 is a simple crop growth model
for simulating growth conditions under water-limited and nitrogen-limited conditions.

• A new module for N/P/K limitations in WOFOST was implemented allowing to simulate the impact
of N/P/K limitations on crop growth in WOFOST.

• A new AgroManager which greatly enhances the way that AgroManagement can be handled in
PCSE. The new agromanager can elegantly combine cropping calendars, timed events and state
events also within rotations over several cropping campaigns. The AgroManager uses a new format
based on YAML to store agromanagement definitions.

• The water-limited production simulation with WOFOST now supports irrigation using the new
AgroManager. An example notebook has been added to explain the different irrigation options.

• Support for reading input data from a CGMS8 and CGMS14 database

Changes in 5.2.5:

• Bug fixes in agromanager causing problems with crop_end_type=”earliest” or “harvest”

• Caching was added to the CGMS weather data providers

• Added CGMSEngine that mimics behaviour of the classic CGMS: after the cropping season is
over, a call to _run() will increase the DAY, but the internal state variables do not change anymore,
although they are kept available and can be queried and stored in OUTPUT.

4 Chapter 1. What’s new

https://github.com/ajwdewit/WOFOST_crop_parameters
http://
https://

PCSE Documentation, Release 5.5

1.1.5 What’s new in PCSE 5.1

PCSE version 5.1 brings the following new features:

• Support for reading input data (weather, soil, crop parameters) from a CGMS12 database. CGMS
is the acronym for Crop Growth Monitoring System and was developed by Alterra in cooperation
with the MARS unit of the Joint Research Centre for crop monitoring and yield forecasting in
Europe. It uses a database structure for storing weather data and model simulation results which
can be read by PCSE. See the MARSwiki for the database definition.

• The ExcelWeatherDataProvider: Before PCSE 5.2 the only file-based format for weather data was
the CABO weather format read by the CABOWeatherDataProvider. Althought the format is well
documented, creating CABO weather files is a bit cumbersome as for each year a new file has to
be created and mistakes are easily made. Therefore, the ExcelWeatherDataProvider was created
that reads its input from a Microsoft Excel file. See here for an example of an Excel weather file:
downloads/nl1.xlsx.

1.1. An overview of new features and fixes 5

http://marswiki.jrc.ec.europa.eu/agri4castwiki/index.php/Appendix_5:_CGMS_tables

PCSE Documentation, Release 5.5

6 Chapter 1. What’s new

CHAPTER

TWO

CROP MODELS AVAILABLE IN PCSE

2.1 Models available in PCSE

The following table lists the models that are available in PCSE and can be imported from pcse.models
package.

Model
name

Description

Wofost72_PP An implementation of WOFOST 7.2 for potential production scenarios.
Wofost72_WLP_FDAn implementation of WOFOST 7.2 for water-limited production scenarios with freely

draining soils.
Wofost80_PP_betaAn implementation of WOFOST 8.0 for potential production scenarios including N/P/K

dynamics
Wofost80_WLP_FD_betaAn implementation of WOFOST 8.0 for water-limited production scenarios including

N/P/K dynamics for freely draining soils.
Wofost80_NWLP_FD_betaAn implementation of WOFOST 8.0 for water-limited and nutrient-limited production

scenarios including N/P/K dynamics for freely draining soils.
LIN-
GRA_PP

A LINGRA implementation for simulating potential production scenarios.

LIN-
GRA_WLP_FD

A LINGRA implementation for simulating water-limited production scenarios with
freely draining soils.

LINTUL3 An implementation of the LINTUL3 model for production scenarios under water-
limited and nitrogen- limited production scenarios.

FAO_WRSI An implementation of the Water Requirement Satisfaction Index model. This re-uses
components from WOFOST to create a simpler approach which computes water re-
quirements and water availability.

Wofost72_PhenologyThe phenology modules from WOFOST 7.2 as a standalone model. This is purely for
convenience as in some cases running the phenology is sufficient and this is much faster
then running the full WOFOST model.

7

PCSE Documentation, Release 5.5

8 Chapter 2. Crop models Available in PCSE

CHAPTER

THREE

USER GUIDE

3.1 User Guide

3.1.1 Background of PCSE

Crop models in Wageningen

The Python Crop Simulation Environment was developed because of a need to re-implement crop simula-
tion models that were developed in Wageningen. Many of the Wageningen crop simulation models were
originally developed in FORTRAN77 or using the FORTRAN Simulation Translator (FST). Although
this approach has yielded high quality models with high numerical performance, the inherent limitations
of models written in FORTRAN is also becoming increasingly evident:

• The structure of the models is often rather monolithic and the different parts are very tightly cou-
pled. Replacing parts of the model with another simulation approach is not easy.

• The models rely on file-based I/O which is difficult to change. For example, interfacing with
databases is complicated in FORTRAN.

• In general, with low-level languages like FORTRAN, simple things already take many lines of
code and mistakes are easily made, particularly by agronomists and crop scientist that have limited
experience in developing or adapting software.

To overcome many of the limitations above, the Python Crop Simulation Environment (PCSE) was de-
veloped. It provides an environment for developing simulation models as well as a number of implemen-
tations of crop simulation models. PCSE is written in pure Python code which makes it more flexible,
easier to modify and extensible allowing easy interfacing with databases, graphical user interfaces, visu-
alization tools and numerical/statistical packages. PCSE has several interesting features:

• Implementation in pure Python. The core system has a small number of dependencies outside the
Python standard library. However many data providers require certain packages to be installed.
Most of these can be automatically installed from the Python Package Index (PyPI) (SQLAlchemy,
PyYAML, xlrd, openpyxl, requests) and in processing of the output of models is most easily done
with pandas DataFrames.

• Modular design allowing you to add or change components relatively quickly with a simple but
powerful approach to communicate variables between modules.

• Similar to FST, it enforces good model design by explicitly separating parameters, rate variables
and state variables. Moreover PCSE takes care of the module initialization, calculation of rates of
changes, updating of state variables and actions needed to finalize the simulation.

9

PCSE Documentation, Release 5.5

• Input/Output is completely separated from the simulation model itself. Therefore PCSE models can
easily read from and write to text files, databases and scientific formats such as HDF or NetCDF.
Moreover, PCSE models can be easily embedded in, for example, docker containers to build a web
API around a crop model.

• Built-in testing of program modules ensuring integrity of the system

Why Python

PCSE was first and foremost developed from a scientific need, to be able to quickly adapt models and
test ideas. In science, Python is quickly becoming a tool for implementing algorithms, visualization
and explorative analysis due to its clear syntax and ease of use. An additional advantage is that the C
implementation of Python can be easily interfaced with routines written in FORTRAN and therefore
many FORTRAN routines can be reused by simulation models written with PCSE.

Many packages exist for numeric analysis (e.g. NumPy, SciPy), visualisation (e.g. MatPlotLib, Chaco),
distributed computing (e.g. IPython, pyMPI) and interfacing with databases (e.g. SQLAlchemy). More-
over, for statistical analyses an interface with R-project can be established through Rpy or Rserve. Finally,
Python is an Open Source interpreted programming language that runs on almost any hardware and op-
erating system.

Given the above considerations, it was quickly recognized that Python was a good choice. Although,
PCSE was developed for scientific purposes, it has already been implemented for tasks in production
environments and has been embedded in container-based web services.

History of PCSE

Up until version 4.1, PCSE was called “PyWOFOST” as its primary goal was to provide a Python im-
plementation of the WOFOST crop simulation model. However, as the system has grown it has become
evident that the system can be used to implement, extend or hybridize (crop) simulation models. There-
fore, the name “PyWOFOST” became too narrow and the name Python Crop Simulation Environment
was selected in analog with the FORTRAN Simulation Environment (FSE).

Limitations of PCSE

PCSE also has its limitations, in fact there are several:

• Speed: flexibility comes a at a price; PCSE is considerably slower than equivalent models written
in FORTRAN or another compiled language.

• The simulation approach in PCSE is currently limited to rectangular (Euler) integration with a
fixed daily time-step. Although the internal time-step of modules can be made more fine-grained
if needed.

• No graphical user interface. However the lack of a user interface is partly compensated by using
PCSE with the pandas package and the Jupyter notebook. PCSE output can be easily converted
to a pandas DataFrame which can be used to display charts in an Jupyter notebook. See also my
collection of notebooks with examples using PCSE

10 Chapter 3. User guide

http://pandas.pydata.org/
https://jupyter.org/
https://github.com/ajwdewit/pcse_notebooks

PCSE Documentation, Release 5.5

License

The source code of PCSE is made available under the European Union Public License (EUPL), Version
1.2 or as soon they will be approved by the European Commission - subsequent versions of the EUPL
(the “Licence”). You may not use this work except in compliance with the Licence. You may obtain a
copy of the Licence at: https://joinup.ec.europa.eu/community/eupl/og_page/eupl

The PCSE package contains some modules that have been taken and/or modified from other open source
projects:

• the pydispatch module obtained from http://pydispatcher.sourceforge.net/ which is distributed un-
der a BSD style license.

• The traitlets module which was taken and adapted from the IPython project (https://ipython.org/)
which are distributed under a BSD style license. A PCSE specific version of traitlets was created
and is available here

See the project pages of both projects for exact license terms.

3.1.2 Installing PCSE

Requirements and dependencies

PCSE is being developed on Ubuntu Linux 18.04 and Windows 10 using python 3.7 and python 3.8 As
Python is a platform independent language, PCSE works equally well on Linux, Windows or Mac OSX.
Before installing PCSE, Python itself must be installed on your system which we will demonstrate below.
PCSE has a number of dependencies on other python packages which are the following:

- SQLAlchemy>=0.8.0
- PyYAML>=3.11
- xlrd>=0.9.3
- openpyxl>=3.0
- requests>=2.0.0
- pandas>=0.20
- traitlets-pcse==5.0.0.dev

The last package in the list is a modified version of the traitlets package which provides some additional
functionality used by PCSE.

Setting up your python environment

A convenient way to set up your python environment for PCSE is through the Anaconda python distribu-
tion. In the present PCSE Documentation all examples of installing and using PCSE refer to the Windows
10 platform.

First, we suggest you download and install the MiniConda python distribution which provides a mini-
mum python environment that we will use to bootstrap a dedicated environment for PCSE. For the rest
of this guide we will assume that you use Windows 10 and install the 64bit miniconda for python 3
(Miniconda3-latest-Windows-x86_64.exe). The environment that we will create contains not only
the dependencies for PCSE, it also includes many other useful packages such as IPython, `Pandas`_ and
the Jupyter notebook. These packages will be used in the Getting Started section as well.

After installing MiniConda you should open a command box and check that conda is installed properly:

3.1. User Guide 11

https://joinup.ec.europa.eu/community/eupl/og_page/eupl
http://pydispatcher.sourceforge.net/
https://ipython.org/
https://pypi.org/project/traitlets-pcse/
https://traitlets.readthedocs.io/en/stable/
https://store.continuum.io/cshop/anaconda/
http://conda.pydata.org/miniconda.html
https://ipython.org/
https://jupyter.org/

PCSE Documentation, Release 5.5

(py3_pcse) C:\>conda info

active environment : py3_pcse
active env location : C:\data\Miniconda3\envs\py3_pcse

shell level : 3
user config file : C:\Users\wit015\.condarc

populated config files : C:\Users\wit015\.condarc
conda version : 4.9.2

conda-build version : not installed
python version : 3.8.5.final.0

virtual packages : __win=0=0
__archspec=1=x86_64

base environment : C:\data\Miniconda3 (writable)
channel URLs : https://conda.anaconda.org/conda-forge/win-64

https://conda.anaconda.org/conda-forge/noarch
https://repo.anaconda.com/pkgs/main/win-64
https://repo.anaconda.com/pkgs/main/noarch
https://repo.anaconda.com/pkgs/r/win-64
https://repo.anaconda.com/pkgs/r/noarch
https://repo.anaconda.com/pkgs/msys2/win-64
https://repo.anaconda.com/pkgs/msys2/noarch

package cache : C:\data\Miniconda3\pkgs
C:\Users\wit015\.conda\pkgs
C:\Users\wit015\AppData\Local\conda\conda\pkgs

envs directories : C:\data\Miniconda3\envs
C:\Users\wit015\.conda\envs
C:\Users\wit015\AppData\Local\conda\conda\envs

platform : win-64
user-agent : conda/4.9.2 requests/2.24.0 CPython/3.8.5␣

→˓Windows/10 Windows/10.0.18362
administrator : False

netrc file : None
offline mode : False

Now we will use a Conda environment file to recreate the python environment that we use to develop
and run PCSE. First you should download the conda environment file which comes in two flavours,
an environment for running PCSE on python 3 (downloads/py3_pcse.yml) and one for python 2
(downloads/py2_pcse.yml). It is strongly recommended to use the python 3 version as python 2 is not
maintained anymore. Both environments include the Jupyter notebook and IPython which are needed for
running the getting started section and the example notebooks. Save the environment file on a temporary
location such as d:\temp\make_env\. We will now create a dedicated virtual environment using the
command conda env create and tell conda to use the environment file for python3 with the option -f
p3_pcse.yml as show below:

(C:\Miniconda3) D:\temp\make_env>conda env create -f py3_pcse.yml
Fetching package metadata
Solving package specifications: .
intel-openmp-2 100% |###############################| Time: 0:00:00 6.39 MB/
→˓s

(continues on next page)

12 Chapter 3. User guide

PCSE Documentation, Release 5.5

(continued from previous page)

... Lots of output here

Installing collected packages: traitlets-pcse
Successfully installed traitlets-pcse-5.0.0.dev0
#
To activate this environment, use:
> activate py3_pcse
#
To deactivate an active environment, use:
> deactivate
#
* for power-users using bash, you must source
#

You can then activate your environment (note the addition of (py3_pcse) on your command prompt):

D:\temp\make_env>activate py3_pcse
Deactivating environment "C:\Miniconda3"...
Activating environment "C:\Miniconda3\envs\py3_pcse"...

(py3_pcse) D:\temp\make_env>

Installing PCSE

The easiest way to install PCSE is through the python package index (PyPI). Installing from PyPI is
mostly useful if you are interested in using the functionality provided by PCSE in your own scripts, but
are not interested in modifying or contributing to PCSE itself. Installing from PyPI is done using the
package installer pip which searches the python package index for a package, downloads and installs it
into your python environment (example below for PCSE 5.4):

(py3_pcse) D:\temp\make_env>pip install pcse

Collecting pcse
Downloading https://files.pythonhosted.org/packages/8c/92/

→˓d4444cce1c58e5a96f4d6dc9c0e042722f2136df24a2750352e7eb4ab053/PCSE-5.4.0.tar.
→˓gz (791kB)

100% |¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦| 798kB 1.6MB/s
Requirement already satisfied: numpy>=1.6.0 in c:\miniconda3\envs\py3_pcse\
→˓lib\site-packages (from pcse) (1.15.1)
Requirement already satisfied: SQLAlchemy>=0.8.0 in c:\miniconda3\envs\py3_
→˓pcse\lib\site-packages (from pcse) (1.2.11)
Requirement already satisfied: PyYAML>=3.11 in c:\miniconda3\envs\py3_pcse\
→˓lib\site-packages (from pcse) (3.13)
Requirement already satisfied: xlrd>=0.9.3 in c:\miniconda3\envs\py3_pcse\lib\
→˓site-packages (from pcse) (1.1.0)
Requirement already satisfied: xlwt>=1.0.0 in c:\miniconda3\envs\py3_pcse\lib\
→˓site-packages (from pcse) (1.3.0)
Requirement already satisfied: requests>=2.0.0 in c:\miniconda3\envs\py3_pcse\
→˓lib\site-packages (from pcse) (2.19.1)

(continues on next page)

3.1. User Guide 13

https://pypi.python.org/pypi/PCSE

PCSE Documentation, Release 5.5

(continued from previous page)

Requirement already satisfied: pandas>=0.20 in c:\miniconda3\envs\py3_pcse\
→˓lib\site-packages (from pcse) (0.23.4)
Requirement already satisfied: traitlets-pcse==5.0.0.dev in c:\miniconda3\
→˓envs\py3_pcse\lib\site-packages (from pcse) (5.0.0.dev0)
Requirement already satisfied: chardet<3.1.0,>=3.0.2 in c:\miniconda3\envs\
→˓py3_pcse\lib\site-packages (from requests>=2.0.0->pcse) (3.0.4)
Requirement already satisfied: idna<2.8,>=2.5 in c:\miniconda3\envs\py3_pcse\
→˓lib\site-packages (from requests>=2.0.0->pcse) (2.7)
Requirement already satisfied: certifi>=2017.4.17 in c:\miniconda3\envs\py3_
→˓pcse\lib\site-packages (from requests>=2.0.0->pcse) (2018.8.24)
Requirement already satisfied: urllib3<1.24,>=1.21.1 in c:\miniconda3\envs\
→˓py3_pcse\lib\site-packages (from requests>=2.0.0->pcse) (1.23)
Requirement already satisfied: python-dateutil>=2.5.0 in c:\miniconda3\envs\
→˓py3_pcse\lib\site-packages (from pandas>=0.20->pcse) (2.7.3)
Requirement already satisfied: pytz>=2011k in c:\miniconda3\envs\py3_pcse\lib\
→˓site-packages (from pandas>=0.20->pcse) (2018.5)
Requirement already satisfied: six in c:\miniconda3\envs\py3_pcse\lib\site-
→˓packages (from traitlets-pcse==5.0.0.dev->pcse) (1.11.0)
Requirement already satisfied: decorator in c:\miniconda3\envs\py3_pcse\lib\
→˓site-packages (from traitlets-pcse==5.0.0.dev->pcse) (4.3.0)
Requirement already satisfied: ipython-genutils in c:\miniconda3\envs\py3_
→˓pcse\lib\site-packages (from traitlets-pcse==5.0.0.dev->pcse) (0.2.0)
Building wheels for collected packages: pcse

Running setup.py bdist_wheel for pcse ... done
Stored in directory: C:\Users\wit015\AppData\Local\pip\Cache\wheels\2f\e6\

→˓2c\3952ff951dffea5ab2483892edcb7f9310faa319d050d3be6c
Successfully built pcse
twisted 18.7.0 requires PyHamcrest>=1.9.0, which is not installed.
mkl-random 1.0.1 requires cython, which is not installed.
mkl-fft 1.0.4 requires cython, which is not installed.
Installing collected packages: pcse
Successfully installed pcse-5.4.0

If you are wondering what the difference between pip and conda are than have a look here

If you want to develop with or contribute to PCSE, than you should fork the PCSE repository on GitHub
and get a local copy of PCSE using git clone. See the help on github and for Windows/Mac users the
GitHub Desktop application.

Testing PCSE

To guarantee its integrity, the PCSE package includes a limited number of internal tests that are installed
automatically with PCSE. In addition, the PCSE git repository has a large number of the tests in the
test folder which do a more thorough job in testing but will take a long time to complete (e.g. an hour
or more). The internal tests present users with a quick way to ensure that the output produced by the
different components matches with the expected outputs. While the full test suite is useful for developers
only.

Test data for the internal tests can be found in the pcse.tests.test_data package as well as in an SQLite
database (pcse.db). This database can be found under .pcse in your home folder and will be automatically

14 Chapter 3. User guide

https://stackoverflow.com/questions/20994716/what-is-the-difference-between-pip-and-conda#20994790
https://github.com/ajwdewit/pcse
https://help.github.com/
https://desktop.github.com/

PCSE Documentation, Release 5.5

created when importing PCSE for the first time. When you delete the database file manually it will be
recreated next time you import PCSE.

For running the internal tests of the PCSE package we need to start python and import pcse:

(py3_pcse) D:\temp\make_env>python
Python 3.6.5 (default, Aug 14 2018, 19:12:50) [MSC v.1900 32 bit (Intel)] ::␣
→˓Anaconda, Inc. on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import pcse
Building PCSE demo database at: C:\Users\wit015\.pcse\pcse.db ... OK
>>>

Next, the tests can be executed by calling the test() function at the top of the package:

.. code-block:: doscon

>>> pcse.test()
runTest (pcse.tests.test_abioticdamage.Test_FROSTOL) ... ok
runTest (pcse.tests.test_partitioning.Test_DVS_Partitioning) ... ok
runTest (pcse.tests.test_evapotranspiration.Test_
→˓PotentialEvapotranspiration) ... ok
runTest (pcse.tests.test_evapotranspiration.Test_
→˓WaterLimitedEvapotranspiration1) ... ok
runTest (pcse.tests.test_evapotranspiration.Test_
→˓WaterLimitedEvapotranspiration2) ... ok
runTest (pcse.tests.test_respiration.Test_
→˓WOFOSTMaintenanceRespiration) ... ok
runTest (pcse.tests.test_penmanmonteith.Test_PenmanMonteith1) ... ok
runTest (pcse.tests.test_penmanmonteith.Test_PenmanMonteith2) ... ok
runTest (pcse.tests.test_penmanmonteith.Test_PenmanMonteith3) ... ok
runTest (pcse.tests.test_penmanmonteith.Test_PenmanMonteith4) ... ok
runTest (pcse.tests.test_agromanager.TestAgroManager1) ... ok
runTest (pcse.tests.test_agromanager.TestAgroManager2) ... ok
runTest (pcse.tests.test_agromanager.TestAgroManager3) ... ok
runTest (pcse.tests.test_agromanager.TestAgroManager4) ... ok
runTest (pcse.tests.test_agromanager.TestAgroManager5) ... ok
runTest (pcse.tests.test_agromanager.TestAgroManager6) ... ok
runTest (pcse.tests.test_agromanager.TestAgroManager7) ... ok
runTest (pcse.tests.test_agromanager.TestAgroManager8) ... ok
runTest (pcse.tests.test_wofost.TestWaterlimitedPotato) ... ok
runTest (pcse.tests.test_wofost.TestPotentialSunflower) ... ok
runTest (pcse.tests.test_wofost.TestWaterlimitedWinterRapeseed) ...␣
→˓ok
runTest (pcse.tests.test_wofost.TestPotentialSpringBarley) ... ok
runTest (pcse.tests.test_wofost.TestPotentialGrainMaize) ... ok
runTest (pcse.tests.test_wofost.TestWaterlimitedSpringBarley) ... ok
runTest (pcse.tests.test_wofost.TestPotentialWinterRapeseed) ... ok
runTest (pcse.tests.test_wofost.TestPotentialWinterWheat) ... ok
runTest (pcse.tests.test_wofost.TestWaterlimitedSunflower) ... ok
runTest (pcse.tests.test_wofost.TestWaterlimitedWinterWheat) ... ok

(continues on next page)

3.1. User Guide 15

PCSE Documentation, Release 5.5

(continued from previous page)

runTest (pcse.tests.test_wofost.TestWaterlimitedGrainMaize) ... ok
runTest (pcse.tests.test_wofost.TestPotentialPotato) ... ok
runTest (pcse.tests.test_wofost80.TestWOFOST80_Potential_
→˓WinterWheat) ... ok
runTest (pcse.tests.test_wofost80.TestWOFOST80_WaterLimited_
→˓WinterWheat) ... ok

Ran 32 tests in 39.809s

OK

If the model output matches the expected output the test will report ‘OK’, otherwise an error will be
produced with a detailed traceback on where the problem occurred. Note that the results may deviate
from the output above when tests were added or removed.

Moreover, SQLAlchemy may complain with a warning that can be safely ignored:

C:\Miniconda3\envs\py3_pcse\lib\site-packages\sqlalchemy\sql\sqltypes.py:603:␣
→˓SAWarning:
Dialect sqlite+pysqlite does *not* support Decimal objects natively, and␣
→˓SQLAlchemy must
convert from floating point - rounding errors and other issues may occur.␣
→˓Please consider
storing Decimal numbers as strings or integers on this platform for lossless␣
→˓storage.

3.1.3 Getting started

This guide will help you install PCSE as well as provide some examples to get you started with modelling.
The examples are currently focused on applying the WOFOST and LINTUL3 crop simulation models,
although other crop simulation models may become available within PCSE in the future.

3.1.4 An interactive PCSE/WOFOST session

The easiest way to demonstrate PCSE is to import WOFOST from PCSE and run it from an interactive
Python session. We will be using the start_wofost() script that connects to a the demo database which
contains meteorologic data, soil data, crop data and management data for a grid location in South-Spain.

Let’s start a WOFOST object for modelling winter-wheat (crop=1) on a location in South-Spain (grid
31031) for the year 2000 under water-limited conditions for a freely draining soil (mode=’wlp’):

>>> wofost_object = pcse.start_wofost(grid=31031, crop=1, year=2000, mode='wlp
→˓')
>>> type(wofost_object)
<class 'pcse.models.Wofost72_WLP_FD'>

You have just successfully initialized a PCSE/WOFOST object in the Python interpreter, which is in its
initial state and waiting to do some simulation. We can now advance the model state for example with 1
day:

16 Chapter 3. User guide

PCSE Documentation, Release 5.5

>>> wofost_object.run()

Advancing the crop simulation with only 1 day, is often not so useful so the number of days to simulate
can be specified as well:

>>> wofost_object.run(days=10)

Retrieving information about the calculated model states or rates can be done with the get_variable()
method on a PCSE object. For example, to retrieve the leaf area index value in the current model state
you can do:

>>> wofost_object.get_variable('LAI')
0.28708095263317146
>>> wofost_object.run(days=25)
>>> wofost_object.get_variable('LAI')
1.5281215808337203

Showing that after 11 days the LAI value is 0.287. When we increase time with another 25 days, the
LAI increases to 1.528. The get_variable method can retrieve any state or rate variable that is defined
somewhere in the model. Finally, we can finish the crop season by letting it run until the model terminates
because the crop reaches maturity or the harvest date:

>>> wofost_object.run_till_terminate()

Next we retrieve the simulation results at each time-step (‘output’) of the simulation:

>>> output = wofost_object.get_output()

We can now use the pandas package to turn the simulation output into a dataframe which is much easier
to handle and can be exported to different file types. For example an excel file which should look like
this downloads/wofost_results.xls:

>>> import pandas as pd
>>> df = pd.DataFrame(output)
>>> df.to_excel("wofost_results.xls")

Finally, we can retrieve the results at the end of the crop cycle (summary results) and have a look at these
as well:

>>> summary_output = wofost_object.get_summary_output()
>>> msg = "Reached maturity at {DOM} with total biomass {TAGP} kg/ha "\
"and a yield of {TWSO} kg/ha."
>>> print(msg.format(**summary_output[0]))
Reached maturity at 2000-05-31 with total biomass 15261.7521735 kg/ha and a␣
→˓yield of 7179.80460783 kg/ha.

>>> summary_output
[{'CTRAT': 22.457536342947606,
'DOA': datetime.date(2000, 3, 28),
'DOE': datetime.date(2000, 1, 1),
'DOH': None,

(continues on next page)

3.1. User Guide 17

PCSE Documentation, Release 5.5

(continued from previous page)

'DOM': datetime.date(2000, 5, 31),
'DOS': None,
'DOV': None,
'DVS': 2.01745939841335,
'LAIMAX': 6.132711275237731,
'RD': 60.0,
'TAGP': 15261.752173534584,
'TWLV': 3029.3693107257263,
'TWRT': 1546.990661062695,
'TWSO': 7179.8046078262705,
'TWST': 5052.578254982587}]

Running PCSE/WOFOST with custom input data

For running PCSE/WOFOST (and PCSE models in general) with your own data sources you need three
different types of inputs:

1. Model parameters that parameterize the different model components. These parameters usually
consist of a set of crop parameters (or multiple sets in case of crop rotations), a set of soil parameters
and a set of site parameters. The latter provide ancillary parameters that are specific for a location.

2. Driving variables represented by weather data which can be derived from various sources.

3. Agromanagement actions which specify the farm activities that will take place on the field that is
simulated by PCSE.

For the second example we will run a simulation for sugar beet in Wageningen (Netherlands) and
we will read the input data step by step from several different sources instead of using the pre-
configured start_wofost() script. For the example we will assume that data files are in the directory
D:\userdata\pcse_examples and all the parameter files needed can be found by unpacking this zip file
downloads/quickstart_part2.zip.

First we will import the necessary modules and define the data directory:

>>> import os
>>> import pcse
>>> import matplotlib.pyplot as plt
>>> data_dir = r'D:\userdata\pcse_examples'

Crop parameters

The crop parameters consist of parameter names and the corresponding parameter values that are needed
to parameterize the components of the crop simulation model. These are crop-specific values regarding
phenology, assimilation, respiration, biomass partitioning, etc. The parameter file for sugar beet is taken
from the crop files in the WOFOST Control Centre.

The crop parameters for many models in Wageningen are often provided in the CABO format that could
be read with the TTUTIL FORTRAN library. PCSE tries to be backward compatible as much as possible
and provides the CABOFileReader for reading parameter files in CABO format. the CABOFileReader
returns a dictionary with the parameter name/value pairs:

18 Chapter 3. User guide

http://www.wageningenur.nl/wofost
http://edepot.wur.nl/17847

PCSE Documentation, Release 5.5

>>> from pcse.fileinput import CABOFileReader
>>> cropfile = os.path.join(data_dir, 'sug0601.crop')
>>> cropdata = CABOFileReader(cropfile)
>>> print(cropdata)

Printing the cropdata dictionary gives you a listing of the header and all parameters and their values.

Soil parameters

The soildata dictionary provides the parameter name/value pairs related to the soil type and soil physical
properties. The number of parameters is variable depending on the soil water balance type that is used
for the simulation. For this example, we will use the water balance for freely draining soils and use the
soil file for medium fine sand: ec3.soil. This file is also taken from the soil files in the WOFOST Control
Centre

>>> soilfile = os.path.join(data_dir, 'ec3.soil')
>>> soildata = CABOFileReader(soilfile)

Site parameters

The site parameters provide ancillary parameters that are not related to the crop or the soil. Examples are
the initial conditions of the water balance such as the initial soil moisture content (WAV) and the initial
and maximum surface storage (SSI, SSMAX). Also the atmospheric CO2 concentration is a typical site
parameter. For the moment, we can define these parameters directly on the Python commandline as a
simple python dictionary. However, it is more convenient to use the WOFOST71SiteDataProvider that
documents the site parameters and provides sensible defaults:

>>> from pcse.util import WOFOST71SiteDataProvider
>>> sitedata = WOFOST71SiteDataProvider(WAV=100, CO2=360)
>>> print(sitedata)
{'SMLIM': 0.4, 'NOTINF': 0, 'CO2': 360.0, 'SSI': 0.0, 'SSMAX': 0.0, 'IFUNRN':␣
→˓0, 'WAV': 100.0}

Finally, we need to pack the different sets of parameters into one variable using the ParameterProvider.
This is needed because PCSE expects one variable that contains all parameter values. Using this approach
has the additional advantage that parameters value can be easily overridden in case of running multiple
simulations with slightly different parameter values:

>>> from pcse.base import ParameterProvider
>>> parameters = ParameterProvider(cropdata=cropdata, soildata=soildata,␣
→˓sitedata=sitedata)

3.1. User Guide 19

http://www.wageningenur.nl/wofost
http://www.wageningenur.nl/wofost

PCSE Documentation, Release 5.5

AgroManagement

The agromanagement inputs provide the start date of the agricultural campaign, the start_date/start_type
of the crop simulation, the end_date/end_type of the crop simulation and the maximum duration of the
crop simulation. The latter is included to avoid unrealistically long simulations for example as a results
of a too high temperature sum requirement.

The agromanagement inputs are defined with a special syntax called YAML which allows to easily create
more complex structures which is needed for defining the agromanagement. The agromanagement file for
sugar beet in Wageningen sugarbeet_calendar.agro can be read with the YAMLAgroManagementReader:

>>> from pcse.fileinput import YAMLAgroManagementReader
>>> agromanagement_file = os.path.join(data_dir, 'sugarbeet_calendar.agro')
>>> agromanagement = YAMLAgroManagementReader(agromanagement_file)
>>> print(agromanagement)
!!python/object/new:pcse.fileinput.yaml_agro_loader.YAMLAgroManagementReader
listitems:
- 2000-01-01:

CropCalendar:
crop_name: sugarbeet
variety_name: sugar_beet_601
crop_start_date: 2000-04-05
crop_start_type: emergence
crop_end_date: 2000-10-20
crop_end_type: harvest
max_duration: 300

StateEvents: null
TimedEvents: null

Daily weather observations

Daily weather variables are needed for running the simulation. There are several data providers in PCSE
for reading weather data, see the section on weather data providers to get an overview.

For this example we will use the weather data from the NASA Power database which provides global
weather data with a spatial resolution of 0.5 degree (~50 km). We will retrieve the data from the Power
database for the location of Wageningen. Note that it can take around 30 seconds to retrieve the weather
data from the NASA Power server the first time:

>>> from pcse.db import NASAPowerWeatherDataProvider
>>> wdp = NASAPowerWeatherDataProvider(latitude=52, longitude=5)
>>> print(wdp)
Weather data provided by: NASAPowerWeatherDataProvider
--------Description---------
NASA/POWER SRB/FLASHFlux/MERRA2/GEOS 5.12.4 (FP-IT) 0.5 x 0.5 Degree Daily␣
→˓Averaged Data
----Site characteristics----
Elevation: 4.7
Latitude: 52.000
Longitude: 5.000

(continues on next page)

20 Chapter 3. User guide

http://yaml.org/

PCSE Documentation, Release 5.5

(continued from previous page)

Data available for 1983-07-01 - 2018-09-16
Number of missing days: 8

Importing, initializing and running a PCSE model

Internally, PCSE uses a simulation engine to run a crop simulation. This engine takes a configuration file
that specifies the components for the crop, the soil and the agromanagement that need to be used for the
simulation. So any PCSE model can be started by importing the engine and initializing it with a given
configuration file and the corresponding parameters, weather data and agromanagement.

However, as many users of PCSE only need a particular configuration (for example the WOFOST model
for potential production), preconfigured Engines are provided in pcse.models. For the sugarbeet example
we will import the WOFOST model for water-limited simulation under freely draining soil conditions:

>>> from pcse.models import Wofost71_WLP_FD
>>> wofsim = Wofost71_WLP_FD(parameters, wdp, agromanagement)

We can then run the simulation and show some final results such as the anthesis and harvest dates (DOA,
DOH), total biomass (TAGP) and maximum LAI (LAIMAX). Next, we retrieve the time series of daily
simulation output using the get_output() method on the WOFOST object:

>>> wofsim.run_till_terminate()
>>> output = wofsim.get_output()
>>> len(output)
294

As the output is returned as a list of dictionaries, we need to unpack these variables from the list of output:

>>> varnames = ["day", "DVS", "TAGP", "LAI", "SM"]
>>> tmp = {}
>>> for var in varnames:
>>> tmp[var] = [t[var] for t in output]

Finally, we can generate some figures of WOFOST variables such as the development (DVS), total
biomass (TAGP), leaf area index (LAI) and root-zone soil moisture (SM) using the MatPlotLib plot-
ting package:

>>> day = tmp.pop("day")
>>> fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(10,8))
>>> for var, ax in zip(["DVS", "TAGP", "LAI", "SM"], axes.flatten()):
>>> ax.plot_date(day, tmp[var], 'b-')
>>> ax.set_title(var)
>>> fig.autofmt_xdate()
>>> fig.savefig('sugarbeet.png')

This should generate a figure of the simulation results as shown below. The complete Python script for
this examples can be downloaded here downloads/quickstart_demo2.py

3.1. User Guide 21

http://matplotlib.org/

PCSE Documentation, Release 5.5

Running a simulation with PCSE/LINTUL3

The LINTUL model (Light INTerception and UtiLisation) is a simple generic crop model, which sim-
ulates dry matter production as the result of light interception and utilization with a constant light use
efficiency. In PCSE the LINTUL family of models has been implemented including the LINTUL3 model
which is used for simulation of crop production under water-limited and nitrogen-limited conditions.

For the third example, we will use LINTUL3 for simulating spring-wheat in the Netherlands under
water-limited and nitrogen-limited conditions. We will again assume that data files are in the directory
D:\userdata\pcse_examples and all the parameter files needed can be found by unpacking this zip file
downloads/quickstart_part3.zip. Note that this guide is also available as an IPython notebook:
downloads/running_LINTUL3.ipynb.

First we will import the necessary modules and define the data directory. We also assume that you have
the matplotlib, `pandas`_ and PyYAML packages installed on your system.:

>>> import os
>>> import pcse
>>> import matplotlib.pyplot as plt
>>> import pandas as pd
>>> import yaml
>>> data_dir = r'D:\userdata\pcse_examples'

22 Chapter 3. User guide

http://matplotlib.org/
http://pyyaml.org/wiki/PyYAML

PCSE Documentation, Release 5.5

Similar to the previous example, for running the PCSE/LINTUL3 model we need to define the tree types
of inputs (parameters, weather data and agromanagement).

Reading model parameters

Model parameters can be easily read from the input files using the PCSEFileReader as we have seen in
the previous example:

>>> from pcse.fileinput import PCSEFileReader
>>> crop = PCSEFileReader(os.path.join(data_dir, "lintul3_springwheat.crop"))
>>> soil = PCSEFileReader(os.path.join(data_dir, "lintul3_springwheat.soil"))
>>> site = PCSEFileReader(os.path.join(data_dir, "lintul3_springwheat.site"))

However, PCSE models expect a single set of parameters and therefore they need to be combined using
the ParameterProvider:

>>> from pcse.base import ParameterProvider
>>> parameterprovider = ParameterProvider(soildata=soil, cropdata=crop,␣
→˓sitedata=site)

Reading weather data

For reading weather data we will use the ExcelWeatherDataProvider. This WeatherDataProvider uses
nearly the same file format as is used for the CABO weather files but stores its data in an MicroSoft Excel
file which makes the weather files easier to create and update:

>>> from pcse.fileinput import ExcelWeatherDataProvider
>>> weatherdataprovider = ExcelWeatherDataProvider(os.path.join(data_dir,
→˓"nl1.xlsx"))
>>> print(weatherdataprovider)
Weather data provided by: ExcelWeatherDataProvider
--------Description---------
Weather data for:
Country: Netherlands
Station: Wageningen, Location Haarweg
Description: Observed data from Station Haarweg in Wageningen
Source: Meteorology and Air Quality Group, Wageningen University
Contact: Peter Uithol
----Site characteristics----
Elevation: 7.0
Latitude: 51.970
Longitude: 5.670
Data available for 2004-01-02 - 2008-12-31
Number of missing days: 32

3.1. User Guide 23

PCSE Documentation, Release 5.5

Defining agromanagement

Defining agromanagement needs a bit more explanation because agromanagement is a relatively complex
piece of PCSE. The agromanagement definition for PCSE is written in a format called YAML and for
the current example looks like this:

Version: 1.0.0
AgroManagement:
- 2006-01-01:

CropCalendar:
crop_name: wheat
variety_name: spring-wheat
crop_start_date: 2006-03-31
crop_start_type: emergence
crop_end_date: 2006-08-20
crop_end_type: earliest
max_duration: 300

TimedEvents:
- event_signal: apply_n

name: Nitrogen application table
comment: All nitrogen amounts in g N m-2
events_table:
- 2006-04-10: {amount: 10, recovery: 0.7}
- 2006-05-05: {amount: 5, recovery: 0.7}

StateEvents: null

The agromanagement definition starts with Version: indicating the version number of the agromanage-
ment file while the actual definition starts after the label AgroManagement:. Next a date must be provided
which sets the start date of the campaign (and the start date of the simulation). Each campaign is defined
by zero or one CropCalendars and zero or more TimedEvents and/or StateEvents. The CropCalendar de-
fines the crop name, variety_name, date of sowing, date of harvesting, etc. while the Timed/StateEvents
define actions that are either connected to a date or to a model state.

In the current example, the campaign starts on 2006-01-01, there is a crop calendar for spring-wheat
starting on 2006-03-31 with a harvest date of 2006-08-20 or earlier if the crop reaches maturity before
this date. Next there are timed events defined for applying N fertilizer at 2006-04-10 and 2006-05-05.
The current example has no state events. For a thorough description of all possibilities see the section on
AgroManagement in the Reference Guide (Chapter 3).

Loading the agromanagement definition must by done with the YAMLAgroManagementReader:

>>> from pcse.fileinput import YAMLAgroManagementReader
>>> agromanagement = YAMLAgroManagementReader(os.path.join(data_dir, "lintul3_
→˓springwheat.amgt"))
>>> print(agromanagement)
!!python/object/new:pcse.fileinput.yaml_agro_loader.YAMLAgroManagementReader
listitems:
- 2006-01-01:

CropCalendar:
crop_end_date: 2006-10-20
crop_end_type: earliest
crop_name: wheat

(continues on next page)

24 Chapter 3. User guide

http://yaml.org/

PCSE Documentation, Release 5.5

(continued from previous page)

variety_name: spring-wheat
crop_start_date: 2006-03-31
crop_start_type: emergence
max_duration: 300

StateEvents: null
TimedEvents:
- comment: All nitrogen amounts in g N m-2

event_signal: apply_n
events_table:
- 2006-04-10:

amount: 10
recovery: 0.7

- 2006-05-05:
amount: 5
recovery: 0.7

name: Nitrogen application table

Starting and running the LINTUL3 model

We have now all parameters, weather data and agromanagement information available to start the LIN-
TUL3 model:

>>> from pcse.models import LINTUL3
>>> lintul3 = LINTUL3(parameterprovider, weatherdataprovider, agromanagement)
>>> lintul3.run_till_terminate()

Next, we can easily get the output from the model using the get_output() method and turn it into a pandas
DataFrame:

>>> output = lintul3.get_output()
>>> df = pd.DataFrame(output).set_index("day")
>>> df.tail()

DVS LAI NUPTT TAGBM TGROWTH TIRRIG \
day
2006-07-28 1.931748 0.384372 4.705356 560.213626 626.053663 0
2006-07-29 1.953592 0.368403 4.705356 560.213626 626.053663 0
2006-07-30 1.974029 0.353715 4.705356 560.213626 626.053663 0
2006-07-31 1.995291 0.339133 4.705356 560.213626 626.053663 0
2006-08-01 2.014272 0.326169 4.705356 560.213626 626.053663 0

TNSOIL TRAIN TRAN TRANRF TRUNOF TTRAN WC \
day
2006-07-28 11.794644 375.4 0 0 0 71.142104 0.198576
2006-07-29 11.794644 376.3 0 0 0 71.142104 0.197346
2006-07-30 11.794644 376.3 0 0 0 71.142104 0.196293
2006-07-31 11.794644 381.6 0 0 0 71.142104 0.198484
2006-08-01 11.794644 381.7 0 0 0 71.142104 0.197384

(continues on next page)

3.1. User Guide 25

PCSE Documentation, Release 5.5

(continued from previous page)

WLVD WLVG WRT WSO WST
day
2006-07-28 88.548865 17.687197 16.649830 184.991591 268.985974
2006-07-29 89.284828 16.951234 16.150335 184.991591 268.985974
2006-07-30 89.962276 16.273785 15.665825 184.991591 268.985974
2006-07-31 90.635216 15.600845 15.195850 184.991591 268.985974
2006-08-01 91.233828 15.002234 14.739974 184.991591 268.985974

Finally, we can visualize the results from the pandas DataFrame with a few commands if your environ-
ment supports plotting:

>>> fig, axes = plt.subplots(nrows=9, ncols=2, figsize=(16,40))
>>> for key, axis in zip(df.columns, axes.flatten()):
>>> df[key].plot(ax=axis, title=key)
>>> fig.autofmt_xdate()
>>> fig.savefig(os.path.join(data_dir, "lintul3_springwheat.png"))

26 Chapter 3. User guide

PCSE Documentation, Release 5.5

3.1. User Guide 27

PCSE Documentation, Release 5.5

3.1.5 Advanced topics

Many more examples plus demonstrations of advanced topics are available as Jupyter notebooks at https:
//github.com/ajwdewit/pcse_notebooks

28 Chapter 3. User guide

https://github.com/ajwdewit/pcse_notebooks
https://github.com/ajwdewit/pcse_notebooks

CHAPTER

FOUR

REFERENCE GUIDE

4.1 Reference Guide

4.1.1 An overview of PCSE

The Python Crop Simulation Environment builds on the heritage provided by the earlier approaches de-
veloped in Wageningen, notably the Fortran Simulation Environment. The FSE manual (van Kraalingen,
1995) provides a very good overview on the principles of Euler integration and its application to crop
simulation models. Therefore, we will not discuss this in detail here.

Nevertheless, PCSE also tries to improve on these approaches by separating the simulation logic into a
number of distinct components that play a role in the implementation of (crop) simulation models:

1. The dynamic part of the simulation is taken care of by a dedicated simulation Engine which handles
the initialization, the ordering of rate/state updates for the soil and plant modules as well as keeping
track of time, retrieving weather data and calling the agromanager module.

2. Solving the differential equations for soil/plant system and updating the model state is deferred to
SimulationObjects that implement (bio)physical processes such as phenological development or
CO2 assimilation.

3. An AgroManager module is included which takes care of signalling agricultural management ac-
tions such as sowing, harvesting, irrigation, etc.

4. Communication between PCSE components is implemented by either exporting variables into a
shared state object or by implementing signals that can be broadcasted and received by any PCSE
object.

5. Several tools are available for providing weather data and reading parameter values from files or
databases.

Next, an overview of the different components in PCSE will be provided.

29

http://edepot.wur.nl/35555

PCSE Documentation, Release 5.5

4.1.2 The Engine

The PCSE Engine provides the environment where the simulation takes place. The engine takes care
of reading the model configuration, initializing model components, driving the simulation forward by
calling the SimulationObjects, calling the agromanagement unit, keeping track of time, providing the
weather data needed and storing the model variables during the simulation for later output. The Engine
itself is generic and can be used for any model that is defined in PCSE. The overall structure of the engine
can be found in the figure below which shows the different elements that are called by the Engine.

Continuous simulation in PCSE

To implement continuous simulation, the engine uses the same approach as FSE: Euler integration with
a fixed time step of one day. The following figure shows the principle of continuous simulation and the
execution order of various steps.

The steps in the process cycle that are shown in the figure above are implemented in the simulation
Engine which is completely separated from the model logic itself. Moreover, it demonstrates that before
the simulation can start the engine has to be initialized which involves several steps:

1. The model configuration must be loaded;

2. The AgroManager module must be initialized and called to determine the first and last of the
simulation sequence;

30 Chapter 4. Reference guide

PCSE Documentation, Release 5.5

Fig. 1: Order of calculations for continuous simulation using Euler integration (after Van Kraalingen,
1995).

3. The timer must be initialized with the first and last day of the simulation sequence;

4. The soil component specified in the model configuration must be initialized.

5. The weather variables must be retrieved for the starting day;

6. The AgroManager must be called to trigger any management events that are scheduled for the
starting day.

7. The initial rates of change based on the initial states and driving variables must be calculated;

8. Finally, output can be collected to save the initial states and rates of the simulation.

The next cycle in the simulation will now start with an update of the timer to the next time step (e.g. day).
Next, the rates of change of the previous day will be integrated onto the state variables and the driving
variables for the current day will be retrieved. Finally, the rates of change will be recalculated based on
the new driving variables and updated model states and so forth.

The simulation loop will terminate when some finish condition has been reached. Usually, the AgroMan-
ager module will encounter the end of the agricultural campaign and will broadcast a terminate signal
that terminates the entire simulation.

4.1. Reference Guide 31

PCSE Documentation, Release 5.5

Input needed by the Engine

To start the Engine four inputs are needed:

1. A weather data provider that provides the Engine with the daily values of weather variables. See
the section on Weather data providers for an overview of the different options for providing weather
data.

2. A set of parameters that is needed to parameterize the SimulationObjects that simulate the soil and
crop processes. Model parameters can be retrieved from different sources like files or databases.
PCSE uses three sets of model parameters: crop parameters, soil parameters and site parameters.
The latter present an ancillary set of parameters that are not related to the soil or the crop. The
atmospheric CO2 concentration is a typical example of a site parameter. Despite having three sets
of parameters, all parameters are encapsulated using a ParameterProvider that provides a uniform
interface to access the different parameter sets. See the section on Data providers for parameter
values for an overview.

3. Agromanagement information that is needed to schedule agromanagement actions that are tak-
ing place during the simulation. See the sections on The AgroManager and Data providers for
agromanagement for a detailed overview.

4. A configuration file that tells the Engine the details of the simulation such as the components to
use for the simulation of the crop, the soil and the agromanagement. Moreover, the results that
should be stored as final and intermediate outputs and some other details.

Engine configuration files

The engine needs a configuration file that specifies which components should be used for simulation and
additional information. This is most easily explained by an example such as the configuration file for the
WOFOST 7.2 model for potential crop production:

-*- coding: utf-8 -*-
Copyright (c) 2004-2021 Wageningen Environmental Research
Allard de Wit (allard.dewit@wur.nl), August 2021
"""PCSE configuration file for WOFOST 7.2 Potential Production simulation

This configuration file defines the soil and crop components that
should be used for potential production simulation.
"""

from pcse.soil.classic_waterbalance import WaterbalancePP
from pcse.crop.wofost7 import Wofost
from pcse.agromanager import AgroManager

Module to be used for water balance
SOIL = WaterbalancePP

Module to be used for the crop simulation itself
CROP = Wofost

Module to use for AgroManagement actions
AGROMANAGEMENT = AgroManager

(continues on next page)

32 Chapter 4. Reference guide

PCSE Documentation, Release 5.5

(continued from previous page)

variables to save at OUTPUT signals
Set to an empty list if you do not want any OUTPUT
OUTPUT_VARS = ["DVS","LAI","TAGP", "TWSO", "TWLV", "TWST",

"TWRT", "TRA", "RD", "SM", "WWLOW"]
interval for OUTPUT signals, either "daily"|"dekadal"|"monthly"|"weekly"
For daily output you change the number of days between successive
outputs using OUTPUT_INTERVAL_DAYS. For dekadal and monthly
output this is ignored.
OUTPUT_INTERVAL = "daily"
OUTPUT_INTERVAL_DAYS = 1
Weekday: Monday is 0 and Sunday is 6
OUTPUT_WEEKDAY = 0

Summary variables to save at CROP_FINISH signals
Set to an empty list if you do not want any SUMMARY_OUTPUT
SUMMARY_OUTPUT_VARS = ["DVS","LAIMAX","TAGP", "TWSO", "TWLV", "TWST",

"TWRT", "CTRAT", "RD", "DOS", "DOE", "DOA",
"DOM", "DOH", "DOV", "CEVST"]

Summary variables to save at TERMINATE signals
Set to an empty list if you do not want any TERMINAL_OUTPUT
TERMINAL_OUTPUT_VARS = []

As you can see, the configuration file is written in plain python code. First of all, it defines the place-
holders SOIL, CROP and AGROMANAGEMENT that define the components that should be used for the
simulation of these processes. These placeholders simply point to the modules that were imported at the
start of the configuration file.

Note: Modules in configuration files must be imported using fully qualified names and relative imports
cannot be used.

The second part is for defining the variables (OUTPUT_VARS) that should be stored during the model
run (during OUTPUT signals) and the details of the regular output interval. Next, summary output
SUMMARY_OUTPUT_VARS can be defined that will be generated at the end of each crop cycle. Finally,
output can be collected at the end of the entire simulation (TERMINAL_OUTPUT_VARS).

Note: Model configuration files for models that are included in the PCSE package reside in the ‘conf/’
folder inside the package. When the Engine is started with the name of a configuration file, it searches
this folder to locate the file. This implies that if you want the start the Engine with your own (modified)
configuration file, you must specify it as an absolute path otherwise the Engine will not find it.

4.1. Reference Guide 33

PCSE Documentation, Release 5.5

The relationship between models and the engine

Models are treated together with the Engine, because models are simply pre-configured Engines. Any
model can be started by starting the Engine with the appropriate configuration file. The only difference is
that models can have methods that deal with specific characteristics of a model. This kind of functionality
cannot be implemented in the Engine because the model details are not known beforehand.

4.1.3 SimulationObjects

PCSE uses SimulationObjects to group parts of the crop simulation model that form a logical entity into
separate program code sections. In this way the crop simulation model is grouped into sections that
implement certain biophysical processes such as phenology, assimilation, respiration, etc. Simulation
objects can be grouped to form components that perform the simulation of an entire crop or a soil profile.

This approach has several advantages:

1. Model code with a certain purpose is grouped together, making it easier to read, understand and
maintain.

2. A SimulationObject contains only parameters, rate and state variables that are needed. In contrast,
with monolythic code it is often unclear (at first glance at least) what biophysical process they
belong to.

3. Isolation of process implementations creates less dependencies, but more importantly, dependen-
cies are evident from the code which makes it easier to modify individual SimulationObjects.

4. SimulationObjects can be tested individually by comparing output vs the expected output (e.g. unit
testing).

5. SimulationObjects can be exchanged for other objects with the same purpose but a different bio-
physical approach. For example, the WOFOST assimilation approach could be easily replaced by
a more simple Light Use Efficiency or Water Use Efficiency approach, by replacing the Simula-
tionObject that handles the CO2 assimilation.

Characteristics of SimulationObjects

Each SimulationObject is defined in the same way and has a couple of standard sections and methods
which facilitates understanding and readability. Each SimulationObject has parameters to define the
mathematical relationships, it has state variables to define the state of the system and it has rate variables
that describe the rate of change from one time step to the next. Moreover, a SimulationObject may
contain other SimulationObjects that together form a logical structure. Finally, the SimulationObject
must implement separate code sections for initialization, rate calculation and integration of the rates of
change. A finalization step which is called at the end of the simulation can be added optionally.

The skeleton of a SimulationObject looks like this:

class CropProcess(SimulationObject):

class Parameters(ParamTemplate):
PAR1 = Float()
more parameters defined here

class StateVariables(StatesTemplate):
(continues on next page)

34 Chapter 4. Reference guide

PCSE Documentation, Release 5.5

(continued from previous page)

STATE1 = Float()
more state variables defined here

class RateVariables(RatesTemplate):
RATE1 = Float()
more rate variables defined here

def initialize(self, day, kiosk, parametervalues):
"""Initializes the SimulationObject with given parametervalues."""
self.params = self.Parameters(parametervalues)
self.rates = self.RateVariables(kiosk)
self.states = self.StateVariables(kiosk, STATE1=0., publish=["STATE1

→˓"])

@prepare_rates
def calc_rates(self, day, drv):

"""Calculate the rates of change given the current states and driving
variables (drv)."""

simple example of rate calculation using rainfall (drv.RAIN)
self.rates.RATE1 = self.params.PAR1 * drv.RAIN

@prepare_states
def integrate(self, day, delt):

"""Integrate the rates of change on the current state variables
multiplied by the time-step
"""
self.states.STATE1 += self.rates.RATE1 * delt

@prepare_states
def finalize(self, day):

"""do some final calculations when the simulation is finishing."""

The strict separation of program logic was copied from the Fortran Simulation Environment (FSE, Rap-
poldt and Van Kraalingen 1996 and Van Kraalingen 1995) and is critical to ensure that the simulation
results are correct. The different calculations types (integration, driving variables and rate calculations)
should be strictly separated. In other words, first all states should be updated, subsequently all driving
variables should be calculated, after which all rates of change should be calculated. If this rule is not
applied rigorously, some rates may pertain to states at the current time whereas others will pertain to
states from the previous time step. Compared to the FSE system and the FORTRAN implementation of
WOFOST, the initialize(), calc_rates(), integrate() and finalize() sections match with the ITASK numbers
1, 2, 3, 4.

A complicating factor that arises when using modular code is how to arrange the communication between
SimulationObjects. For example, the evapotranspiration SimulationObject will need information about
the leaf area index from the leaf_dynamics SimulationObject to calculate the crop transpiration values.
In PCSE the communication between SimulationObjects is taken care of by the so-called VariableKiosk.
The metaphore kiosk is used because the SimulationObjects publish their rate and/or state variables (or
a subset) into the kiosk, other SimulationObjects can subsequently request the variable value from the
kiosk without any knowledge about the SimulationObject that published it. Therefore, the VariableKiosk

4.1. Reference Guide 35

http://edepot.wur.nl/4411
http://edepot.wur.nl/4411
http://edepot.wur.nl/35555
https://github.com/ajwdewit/wofost
https://github.com/ajwdewit/wofost

PCSE Documentation, Release 5.5

is shared by all SimulationObjects and must be provided when SimulationObjects initialize.

See the section on Exchanging data between model components for a detailed description of the variable
kiosk and other ways to communicate between model components.

Simulation Parameters

Usually SimulationObjects have one or more parameters which should be defined as a subclass of the
ParamTemplate class. Although parameters can be specified as part of the SimulationObject definition
directly, subclassing them from ParamTemplate has a few advantages. First of all, parameters must be
initialized and a missing parameter will lead to an exception being raised with a clear message. Secondly,
parameters are initialized as read-only attributes which cannot be changed during the simulation. So
occasionally overwriting a parameter value is impossible this way.

The model parameters are initialized by the calling the Parameters class definition and providing a dic-
tionary with key/value pairs to define the parameters.

State/Rate variables

The definitions for state and rate variables share many properties. Definitions of rate and state variables
should be defined as attributes of a class that inherit from RatesTemplate and StatesTemplate respectively.
Names of rate and state variables that are defined this way must be unique across all model components
and a duplicate variable name somewhere across the model composition will lead to an exception.

Both class instances need the VariableKiosk as its first input parameter which is needed to register the
variables defined. Moreover, variables can be published with the publish keyword as is done in the
example above for STATE1. Publishing a variable means that it will be available in the VariableKiosk
and can be retrieved by other components based on the name of the variables. The main difference
between a rates and a states class is that the states class requires you to provide the initial value of the
state as a keyword parameter in the call. Failing to provide the initial value will lead to an exception
being raised.

Instances of objects containing rate and state variables are read-only by default. In order to change the
value of a rate or state, the instance must be unlocked. For this purpose the decorators @prepare_rates
and @prepare_states are being placed in front of the calls to calc_rates() and integrate() which take
care of unlocking and locking the states and rates instances. Using this approach rate variables can
only be changed during the call where the rates are calculated, states variables are read-only at that stage.
Similarly, state variables can only be changed during the state update while the rates of change are locked.
This mechanism ensures that rate/state updates are carried out in the correct order.

Finally, instances of RatesTemplate have one additional method, called zerofy() while instances of Stat-
esTemplate have one additional method called touch(). Calling zerofy() is normally done by the Engine
and explicitly sets all rates of change to zero. Calling touch() on a states object is only useful when the
states variables do not need to be updated, but you do want to be sure that any published state variables
will remain available in the VariableKiosk.

36 Chapter 4. Reference guide

PCSE Documentation, Release 5.5

4.1.4 The AgroManager

Agromanagement is an intricate part of PCSE which is needed for simulating the processes that are
happening on agriculture fields. In order for crops to grow, farmers must first plow the fields and sow
the crop. Next, they have to do proper management including irrigation, weeding, nutrient application,
pest control and finally harvesting. All these actions have to be scheduled at specific dates, connected to
certain crop stages or in dependence of soil and weather conditions. Moreover specific parameters such
as the amount of irrigation or nutrients must be provided as well.

In previous versions of WOFOST, the options for agromanagement were limited to sowing and harvesting.
On the one had this was because agromanagement was often assumed to be optimal and thus there was
little need for detailed agromanagement. On the other hand, implementing agromanagement is relatively
complex because agromanagement consists of events that are happening once rather than continuously.
As such, it does not fit well in the traditional simulation cycle, see Continuous simulation in PCSE.

Also from a technical point of view implementing such events through the traditional function calls for
rate calculation and state updates is not attractive. For example, for indicating a nutrient application
event several additional parameters would have to be passed: e.g. the type of nutrient, the amount and
its efficiency. This has several drawbacks, first of all, only a limited number of SimulationObjects will
actually do something with this information while for all other objects, the information is of no use.
Second, nutrient application will usually happen only once or twice in the growing cycle. So for a 200-day
growing cycle there will be 198 days where the parameters do not carry any information. Nevertheless,
they would still be present in the function call, thereby decreasing the computational efficiency and the
readability of the code. Therefore, PCSE uses a very different approach for agromanagement events
which is based on signals (see Broadcasting signals).

Defining agromanagement in PCSE

Defining the agromanagement in PCSE is not very complicated and first starts with defining a sequence
of campaigns. Campaigns start on a prescribed calendar date and finalize when the next campaign starts.
Each campaign is characterized by zero or one crop calendar, zero or more timed events and zero or more
state events. The crop calendar specifies the timing of the crop (sowing, harvesting) while the timed and
state events can be used to specify management actions that are either dependent on time (a specific date)
or a certain model state variable such as crop development stage. Crop calendars and event definitions
are only valid for the campaign in which they are defined.

The data format used for defining the agromanagement in PCSE is called YAML. YAML is a versatile
format optimized for readability by humans while still having the power of XML. However, the agro-
management definition in PCSE is by no means tied to YAML and can be read from a database as well.

The structure of the data needed as input for the AgroManager is most easily understood with an example
(below). The example definition consists of three campaigns, the first starting on 1999-08-01, the second
starting on 2000-09-01 and the last campaign starting on 2001-03-01. The first campaign consists of a
crop calendar for winter-wheat starting with sowing at the given crop_start_date. During the campaign
there are timed events for irrigation at 2000-05-25 and 2000-06-30. Moreover, there are state events for
fertilizer application (event_signal: apply_npk) given by development stage (DVS) at DVS 0.3, 0.6 and
1.12.

The second campaign has no crop calendar, timed events or state events. This means that this is a period
of bare soil with only the water balance running. The third campaign is for fodder maize sown at 2001-
04-15 with two series of timed events (one for irrigation and one for N/P/K application) and no state
events. The end date of the simulation in this case will be 2001-11-01 (2001-04-15 + 200 days).

An example of an agromanagement definition file:

4.1. Reference Guide 37

PCSE Documentation, Release 5.5

AgroManagement:
- 1999-08-01:

CropCalendar:
crop_name: wheat
variety_name: winter-wheat
crop_start_date: 1999-09-15
crop_start_type: sowing
crop_end_date:
crop_end_type: maturity
max_duration: 300

TimedEvents:
- event_signal: irrigate

name: Timed irrigation events
comment: All irrigation amounts in cm
events_table:
- 2000-05-25: {amount: 3.0, efficiency=0.7}
- 2000-06-30: {amount: 2.5, efficiency=0.7}

StateEvents:
- event_signal: apply_npk

event_state: DVS
zero_condition: rising
name: DVS-based N/P/K application table
comment: all fertilizer amounts in kg/ha
events_table:
- 0.3: {N_amount : 1, P_amount: 3, K_amount: 4, N_recovery=0.7, P_

→˓recovery=0.7, K_recovery=0.7}
- 0.6: {N_amount: 11, P_amount: 13, K_amount: 14, N_recovery=0.7, P_

→˓recovery=0.7, K_recovery=0.7}
- 1.12: {N_amount: 21, P_amount: 23, K_amount: 24, N_recovery=0.7, P_

→˓recovery=0.7, K_recovery=0.7}
- 2000-09-01:

CropCalendar:
TimedEvents:
StateEvents

- 2001-03-01:
CropCalendar:

crop_name: maize
variety_name: fodder-maize
crop_start_date: 2001-04-15
crop_start_type: sowing
crop_end_date:
crop_end_type: maturity
max_duration: 200

TimedEvents:
- event_signal: irrigate

name: Timed irrigation events
comment: All irrigation amounts in cm
events_table:
- 2001-06-01: {amount: 2.0, efficiency=0.7}
- 2001-07-21: {amount: 5.0, efficiency=0.7}

(continues on next page)

38 Chapter 4. Reference guide

PCSE Documentation, Release 5.5

(continued from previous page)

- 2001-08-18: {amount: 3.0, efficiency=0.7}
- 2001-09-19: {amount: 2.5, efficiency=0.7}

- event_signal: apply_npk
name: Timed N/P/K application table
comment: All fertilizer amounts in kg/ha
events_table:
- 2001-05-25: {N_amount : 50, P_amount: 25, K_amount: 22, N_

→˓recovery=0.7, P_recovery=0.7, K_recovery=0.7}
- 2001-07-05: {N_amount : 70, P_amount: 35, K_amount: 32, N_

→˓recovery=0.7, P_recovery=0.7, K_recovery=0.7}
StateEvents:

Crop calendars

The crop calendar definition will be passed on to a CropCalendar object which is responsible for storing,
checking, starting and ending the crop cycle during a PCSE simulation. At each time step the instance
of CropCalendar is called and at the dates defined by its parameters it initiates the appropriate actions:

• sowing/emergence: A crop_start signal is dispatched including the parameters needed to start the
new crop simulation object (crop_name, variety_name, crop_start_type and crop_end_type)

• maturity/harvest: the crop cycle is ended by dispatching a crop_finish signal with the appropriate
parameters.

For a detailed description of a crop calendar see the code documentation on the CropCalendar in the
section on Agromanagement.

Timed events

Timed events are management actions that are occurring on specific dates. As simulations in PCSE run
on daily time steps it is easy to schedule actions on dates. Timed events are characterized by an event
signal, a name and comment that can be used to describe the event and finally an events table that lists
the dates for the events and the parameters that should be passed onward.

Note that when multiple events are connected to the same date, the order in which they trigger is unde-
termined.

For a detailed description of a timed events see the code documentation on the TimedEventsDispatcher
in the section on Agromanagement.

State events

State events are management actions that are tied to certain model states. Examples are actions such as
nutrient application that should be executed at certain crop stages, or irrigation application that should
occur only when the soil is dry. PCSE has a flexible definition of state events and an event can be
connected to any variable that is defined within PCSE.

Each state event is defined by an event_signal, an event_state (e.g. the model state that triggers the event)
and a zero condition. Moreover, an optional name and an optional comment can be provided. Finally
the events_table specifies at which model state values the event occurs. The events_table is a list which
provides for each state the parameters that should be dispatched with the given event_signal.

4.1. Reference Guide 39

PCSE Documentation, Release 5.5

Managing state events is more complicated than timed events because PCSE cannot determine beforehand
at which time step these events will trigger. For finding the time step at which a state event occurs
PCSE uses the concept of zero-crossing. This means that a state event is triggered when (model_state -
event_state) equals or crosses zero. The zero_condition defines how this crossing should take place. The
value of zero_condition can be:

• rising: the event is triggered when (model_state - event_state) goes from a negative value towards
zero or a positive value.

• falling: the event is triggered when (model_state - event_state) goes from a positive value towards
zero or a negative value.

• either: the event is triggered when (model_state - event_state) crosses or reaches zero from any
direction.

Note that when multiple events are connected to the same state value, the order in which they trigger is
undetermined.

For a detailed description of a state events see the code documentation on the StateEventsDispatcher in
the section on Agromanagement.

Finding the start and end date of a simulation

The agromanager has the task to find the start and end date of the simulation based on the agromanage-
ment definition that has been provided to the Engine. Getting the start date from the agromanagement
definition is straightforward as this is represented by the start date of the first campaign. However, getting
the end date is more complicated because there are several possibilities. The first option is to explicitly
define the end date of the simulation by adding a ‘trailing empty campaign’ to the agromanagement defi-
nition. An example of an agromanagement definition with a ‘trailing empty campaigns’ (YAML format)
is given below. This example will run the simulation until 2001-01-01:

Version: 1.0.0
AgroManagement:
- 1999-08-01:

CropCalendar:
crop_name: wheat
variety_name: winter-wheat
crop_start_date: 1999-09-15
crop_start_type: sowing
crop_end_date:
crop_end_type: maturity
max_duration: 300

TimedEvents:
StateEvents:

- 2001-01-01:

The second option is that there is no trailing empty campaign and in that case the end date of the simula-
tion is retrieved from the crop calendar and/or the timed events that are scheduled. In the example below,
the end date will be 2000-08-05 as this is the harvest date and there are no timed events scheduled after
this date:

Version: 1.0.0
AgroManagement:

(continues on next page)

40 Chapter 4. Reference guide

PCSE Documentation, Release 5.5

(continued from previous page)

- 1999-09-01:
CropCalendar:

crop_name: wheat
variety_name: winter-wheat
crop_start_date: 1999-10-01
crop_start_type: sowing
crop_end_date: 2000-08-05
crop_end_type: harvest
max_duration: 330

TimedEvents:
- event_signal: irrigate

name: Timed irrigation events
comment: All irrigation amounts in cm
events_table:
- 2000-05-01: {amount: 2, efficiency: 0.7}
- 2000-06-21: {amount: 5, efficiency: 0.7}
- 2000-07-18: {amount: 3, efficiency: 0.7}

StateEvents:

In the case that there is no harvest date provided and the crop runs till maturity, the end date from the
crop calendar will be estimated as the crop_start_date plus the max_duration.

Note that in an agromanagement definition where the last campaign contains a definition for state events,
a trailing empty campaign must be provided because otherwise the end date cannot be determined. The
following campaign definition is valid (though silly) but there is no way to determine the end date of the
simulation. Therefore, this definition will lead to an error:

Version: 1.0
AgroManagement:
- 2001-01-01:

CropCalendar:
TimedEvents:
StateEvents:
- event_signal: irrigate

event_state: SM
zero_condition: falling
name: irrigation scheduling on volumetric soil moisture content
comment: all irrigation amounts in cm
events_table:
- 0.25: {amount: 2, efficiency: 0.7}

4.1. Reference Guide 41

PCSE Documentation, Release 5.5

4.1.5 Exchanging data between model components

A complicating factor when dealing with modular code is how to exchange model states or other data
between the different components. PCSE implements two basic methods for exchanging variables:

1. The VariableKiosk which is primarily used to exchange state/rate variables between model com-
ponents and where updates of the state/rate variables are needed at each cycle in the simulation
process.

2. The use of signals that can be broadcasted and received by any PCSE object and which is pri-
marily used to broadcast information as a response to events that are happening during the model
simulation.

The VariableKiosk

The VariableKiosk is an essential component in PCSE and it is created when the Engine starts. Nearly
all objects in PCSE receive a reference to the VariableKiosk and it has many functions which may not be
clear or appreciated at first glance.

First of all, the VariableKiosk registers all state and rate variables which are defined as attributes of a
StateVariables or RateVariables class. By doing so, it also ensures that names are unique; there cannot
be two state/rate variables with the same name within the component hierarchy of a single Engine. This
uniqueness is enforced to avoid name conflicts between components that would affect the publishing of
variables or the retrieval of variables. For example, engine.get_variable(“LAI”) will retrieve the leaf
area index of the crop. However, if there would be two variables named “LAI” it would be unclear which
one is retrieved. It would not even be guaranteed that it is the same variable between function calls or
model runs.

Second, the VariableKiosk takes care of exchanging state and rate variables between model components.
Variables that are published by the RateVariables and StateVariables object will become available in
the VariableKiosk the moment when the variable gets a value assigned. Within the PCSE internals,
published variables have a trigger connected to them that copies their value into the VariableKiosk. The
VariableKiosk should therefore not be regarded as a shared state object but rather as a cache that contains
copies of variable name/value pairs. Moreover, the updating of variables in the kiosk is protected. Only
the SimulationObject that registers and publishes a variable can change its value in the Kiosk. All other
SimulationObjects can query its value, but cannot alter it. Therefore it is impossible for two processes to
manipulate the same variable through the VariableKiosk.

A potential danger with having copies of variables in the kiosk is that copies do not reflect the actual
value anymore, for example due to a missing state update. In such case the value of the state is “lagging”
in the kiosk which is a potential simulation error. To avoid such problems, the kiosk regularly ‘flushes’
its content. After a flush, the variables remain registered in the kiosk, but their values become undefined.
The flushing of variables is taken care of by the engine and is done separately for rate and state variables.
After the update of all states, all rate variables are flushed; when the rate calculation step is finished, all
state variables in the kiosk are flushed. On the one hand, this procedure helps to enforce that calculations
are done in the right order. On the other hand it also implies that in order to keep a state variable available
in the kiosk its value must be updated with the corresponding rate, even if that rate is zero!

The last important function embodied by the VariableKiosk is as the sender ID of signals that are broad-
casted by objects in PCSE. Each signal that is broadcasted has a sender ID and zero or more receivers.
Each instance of a PCSE simulation object is configured to listen only to signals that have their own Vari-
ableKiosk as sender ID. Since the VariableKiosk is unique to each instance of an Engine, this ensures
that two engines that are active in the same PCSE session, will not ‘listen’ to each others signals but

42 Chapter 4. Reference guide

PCSE Documentation, Release 5.5

only to their own signals. This principle becomes critical when running ensembles of models (e.g En-
gines) where the broadcasting of signals of the various ensemble members should not interfere between
members.

In practice, a user of PCSE hardly needs to deal with the VariableKiosk; variables can be published by
indicating them with the publish=[<var1>,<var2>,. . .] keyword when initializing rate/state variables,
while retrieving values from the VariableKiosk works through the normal dictionary look up. For more
details on the VariableKiosk see the description in the Base classes section.

Broadcasting signals

The second mechanism in PCSE for passing around information is by broadcasting signals as a result
of events. This is very similar to the way a user interface toolkit works and where event handlers are
connected to certain events like mouse clicks or buttons being pressed. Instead, events in PCSE are related
to management actions from the AgroManager, output signals from the timer module, the termination of
the simulation, etc.

Signals in PCSE are defined in the signals module which can be easily imported by any module that
needs access to signals. Signals are simply defined as strings but any hashable object type would do.
Most of the work for dealing with signals is in setting up a receiver. A receiver is usually a method on a
SimulationObject that will be called when the signal is broadcasted. This method will then be connected
to the signal during the initialization of the object. This is easy to describe with an example:

mysignal = "My first signal"

class MySimObj(SimulationObject):

def initialize(self, day, kiosk):
self._connect_signal(self.handle_mysignal, mysignal)

def handle_mysignal(self, arg1, arg2):
print "Value of arg1, arg2: %s, %s" % (arg1, arg2)

def send_mysignal(self):
self._send_signal(signal=mysignal, arg2="A", arg1=2.5)

In the example above, the initialize() section connects the handle_mysignal() method to signals of type
mysignal having two arguments arg1 and arg2. When the object is initialized and the send_mysignal()
is called the handler will print out the values of its two arguments:

>>> from pcse.base import VariableKiosk
>>> from datetime import date
>>> d = date(2000,1,1)
>>> v = VariableKiosk()
>>> obj = MySimObj(d, v)
>>> obj.send_mysignal()
Value of arg1, arg2: 2.5, A
>>>

Note that the methods for receiving signals _connect_signal() and sending signals _send_signal() are
available because of subclassing SimulationObject. Both methods are highly flexible regarding the argu-
ments and keyword arguments that can be passed on with the signal. For more details have a look at the

4.1. Reference Guide 43

PCSE Documentation, Release 5.5

documentation in the Signals module and the documentation of the PyDispatcher package which is used
to provide this functionality.

4.1.6 Data providers in PCSE

PCSE needs to receive inputs on weather, parameter values and agromanagement in order to carry out
the simulation. To obtain the required inputs several data providers have been written that read these
inputs from a variety of sources. Nevertheless, care has been taken to avoid dependencies on a particular
database and file format. As a consequence there is no direct coupling between PCSE and a particular
file format or database. This ensures that a variety of data sources can be used, ranging from simple files,
relational databases and internet resources.

Weather data in PCSE

Required weather variables

To run the crop simulation, the engine needs meteorological variables that drive the processes that are
being simulated. PCSE requires the following daily meteorological variables:

Name Description Unit
TMAX Daily maximum temperature ∘𝐶

TMIN Daily minimum temperature ∘𝐶

VAP Mean daily vapour pressure ℎ𝑃𝑎

WIND Mean daily wind speed at 2 m above ground level 𝑚𝑠𝑒𝑐−1

RAIN Precipitation (rainfall or water equivalent in case of snow or hail). 𝑐𝑚𝑑𝑎𝑦−1

IRRAD Daily global radiation 𝐽𝑚−2𝑑𝑎𝑦−1

SNOWDEPTH Depth of snow cover (optional) 𝑐𝑚

The snow depth is an optional meteorological variable and is only used for estimating the impact of
frost damage on the crop (if enabled). Snow depth can also be simulated by the SnowMAUS module
if observations are not available on a daily basis. Furthermore there are some meteorological variables
which are derived from the previous ones:

Name Description Unit
E0 Penman potential evaporation for a free water surface 𝑐𝑚𝑑𝑎𝑦−1

ES0 Penman potential evaporation for a bare soil surface 𝑐𝑚𝑑𝑎𝑦−1

ET0 Penman or Penman-Monteith potential evaporation for a reference crop
canopy

𝑐𝑚𝑑𝑎𝑦−1

TEMP Mean daily temperature (TMIN + TMAX)/2 ∘𝐶

DTEMP Mean daytime temperature (TEMP + TMAX)/2 ∘𝐶

TMINRA The 7-day running average of TMIN ∘𝐶

44 Chapter 4. Reference guide

http://pydispatcher.sourceforge.net/

PCSE Documentation, Release 5.5

How weather data is used in PCSE

To provide the simulation Engine with weather data PCSE uses the concept of a WeatherDataProvider
which can retrieve its weather data from various sources but provides a single interface to the Engine for
retrieving the data. This principle can be most easily explained with an example based on weather data
files provided in the Getting Started section downloads/quickstart_part3.zip. In this example we
will read the weather data from an Excel file nl1.xlsx using the ExcelWeatherDataProvider:

>>> import pcse
>>> from pcse.fileinput import ExcelWeatherDataProvider
>>> wdp = ExcelWeatherDataProvider('nl1.xlsx')

We can simply print() the weather data provider to get an overview of its contents:

>>> print(wdp)
Weather data provided by: ExcelWeatherDataProvider
--------Description---------
Weather data for:
Country: Netherlands
Station: Wageningen, Location Haarweg
Description: Observed data from Station Haarweg in Wageningen
Source: Meteorology and Air Quality Group, Wageningen University
Contact: Peter Uithol
----Site characteristics----
Elevation: 7.0
Latitude: 51.970
Longitude: 5.670
Data available for 2004-01-02 - 2008-12-31
Number of missing days: 32

Moreover, we can call the weather dataproviders with a date object to retrieve a WeatherDataContainer
for that date:

>>> from datetime import date
>>> day = date(2006,7,3)
>>> wdc = wdp(day)

Again, we can print the WeatherDataContainer to reveal its contents:

>>> print(wdc)
Weather data for 2006-07-03 (DAY)
IRRAD: 29290000.00 J/m2/day
TMIN: 17.20 Celsius
TMAX: 29.60 Celsius
VAP: 12.80 hPa
RAIN: 0.00 cm/day

E0: 0.77 cm/day
ES0: 0.69 cm/day
ET0: 0.72 cm/day
WIND: 2.90 m/sec
Latitude (LAT): 51.97 degr.

(continues on next page)

4.1. Reference Guide 45

PCSE Documentation, Release 5.5

(continued from previous page)

Longitude (LON): 5.67 degr.
Elevation (ELEV): 7.0 m.

While individual weather elements can be accessed through the standard dotted python notation:

>>> print(wdc.TMAX)
29.6

Finally, for convenience the WeatherDataProvider can also be called with a string representing a date.
This string can in the format YYYYMMDD or YYYYDDD:

>>> print wdp("20060703")
Weather data for 2006-07-03 (DAY)
IRRAD: 29290000.00 J/m2/day
TMIN: 17.20 Celsius
TMAX: 29.60 Celsius
VAP: 12.80 hPa
RAIN: 0.00 cm/day

E0: 0.77 cm/day
ES0: 0.69 cm/day
ET0: 0.72 cm/day
WIND: 2.90 m/sec
Latitude (LAT): 51.97 degr.
Longitude (LON): 5.67 degr.
Elevation (ELEV): 7.0 m.

or in the format YYYYDDD:

>>> print wdp("2006183")
Weather data for 2006-07-03 (DAY)
IRRAD: 29290000.00 J/m2/day
TMIN: 17.20 Celsius
TMAX: 29.60 Celsius
VAP: 12.80 hPa
RAIN: 0.00 cm/day

E0: 0.77 cm/day
ES0: 0.69 cm/day
ET0: 0.72 cm/day
WIND: 2.90 m/sec
Latitude (LAT): 51.97 degr.
Longitude (LON): 5.67 degr.
Elevation (ELEV): 7.0 m.

46 Chapter 4. Reference guide

PCSE Documentation, Release 5.5

Weather data providers available in PCSE

PCSE provides several weather data providers out of the box. First of all, it includes file-based weather
data providers that use an input file on disk to retrieve data. The CABOWeatherDataProvider and the
ExcelWeatherDataProvider use the structure as defined by the CABO Weather System. The ExcelWeath-
erDataProvider has the advantage that data can be stored in an Excel file which is easier to handle than
the ASCII files of the CABOWeatherDataProvider. Furthermore, a weather data provider is available that
uses a simple CSV data format, CSVWeatherDataProvider.

Second, there is a set of WeatherDataProviders that derive the weather data from the database tables
implemented in the different versions of the European Crop Growth Monitoring System including a
CGMS8 database, a CGMS12 database and a CGMS14 database.

Finally, there is the global weather data provided by the agroclimatology from the NASA Power database
at a resolution of 1x1 degree. PCSE provides the NASAPowerWeatherDataProvider which retrieves the
NASA Power data from the internet for a given latitude and longitude.

Data providers for crop parameter values

PCSE has a specific data provider for crop parameters: the YAMLCropDataprovider. The difference with
the generic data providers is that this data provider can read and store the parameter sets for multiple crops
while the generic data providers only can hold a single set. This crop data providers is therefore suitable
for running crop rotations with different crop types as the data provider can switch the active crop.

The most basic use is to call YAMLCropDataProvider with no parameters. It will than pull the crop
parameters from the github repository at https://github.com/ajwdewit/WOFOST_crop_parameters:

>>> from pcse.fileinput import YAMLCropDataProvider
>>> p = YAMLCropDataProvider()
>>> print(p)
YAMLCropDataProvider - crop and variety not set: no activate crop parameter␣
→˓set!

All crops and varieties have been loaded from the github repository, however no active crop has been set.
Therefore, we can activate a particular crop and variety:

>>> p.set_active_crop('wheat', 'Winter_wheat_101')
>>> print(p)
YAMLCropDataProvider - current active crop 'wheat' with variety 'Winter_wheat_
→˓101'
Available crop parameters:
{'DTSMTB': [0.0, 0.0, 30.0, 30.0, 45.0, 30.0], 'NLAI_NPK': 1.0, 'NRESIDLV':␣
→˓0.004,
'KCRIT_FR': 1.0, 'RDRLV_NPK': 0.05, 'TCPT': 10, 'DEPNR': 4.5, 'KMAXRT_FR': 0.
→˓5,
...
...
'TSUM2': 1194, 'TSUM1': 543, 'TSUMEM': 120}

In practice it is usually not necessary to activate a crop parameter set manually because the AgroManager
can handle this. Defining an agromanagement definition with the proper crop_name and variety_name
will automatically activate the crop/variety during the model simulation:

4.1. Reference Guide 47

http://edepot.wur.nl/43010
http://marswiki.jrc.ec.europa.eu/agri4castwiki/index.php/Weather_Monitoring
http://power.larc.nasa.gov
https://github.com/ajwdewit/WOFOST_crop_parameters

PCSE Documentation, Release 5.5

AgroManagement:
- 1999-08-01:

CropCalendar:
crop_name: wheat
variety_name: Winter_wheat_101
crop_start_date: 1999-09-15
crop_start_type: sowing
crop_end_date:
crop_end_type: maturity
max_duration: 300

TimedEvents:
StateEvents:

Additionally, it is possible to load YAML parameter files from your local file system:

>>> p = YAMLCropDataProvider(fpath=r"D:\UserData\sources\WOFOST_crop_
→˓parameters")
>>> print(p)
YAMLCropDataProvider - crop and variety not set: no activate crop parameter␣
→˓set!

Finally, it is possible to pull data from your fork of my github repository by specifying the URL to that
repository:

>>> p = YAMLCropDataProvider(repository="https://raw.githubusercontent.com/
→˓<your_account>/WOFOST_crop_parameters/master/")

Note that this URL should point to the location where the raw files can be found. In case of github, these
URLs start with https://raw.githubusercontent, for other systems (e.g. gitlab) check the manual.

To increase performance of loading parameters, the YAMLCropDataProvider will create a cache file that
can be restored much quicker compared to loading the YAML files. When reading YAML files from
the local file system, care is taken to ensure that the cache file is re-created when updates to the local
YAML are made. However, it should be stressed that this is not possible when parameters are retrieved
from a URL and there is a risk that parameters are loaded from an outdated cache file. In that case use
force_reload=True to force loading the parameters from the URL.

Generic data providers for parameters

PCSE provides several modules for retrieving parameter values for use in simulation models. The general
concept that is used by all data providers for parameters is that they return a python dictionary object
with the parameter names and values as key/value pairs. This concept is independent of the source where
the parameters come from, either a file, a relational database or an internet source. It also means that
parameters can be easily defined or changed on the command prompt, which is useful when iterating over
loops and changing parameter files at each iteration. For example when showing the impact of a change
in a crop parameter one could easily do:

>>> from pcse.fileinput import CABOFileReader
>>> import numpy as np
>>> cropfile = os.path.join(data_dir, 'sug0601.crop')

(continues on next page)

48 Chapter 4. Reference guide

PCSE Documentation, Release 5.5

(continued from previous page)

>>> cropdata = CABOFileReader(cropfile)
>>> TSUM1_values = np.arange(800, 1200, 25)
>>> for tsum1 in TSUM1_values:

cropdata["TSUM1"] = tsum1
code needed to run the simulation goes here

PCSE provides two file-based data providers for reading parameters. The first one is the CABOFileReader
which reads parameter file in the CABO format that was used to write parameter files for models in
FORTRAN or FST. A more versatile reader is the PCSEFileReader which uses the python language
itself as its syntax. This also implies that all the python syntax features can be used in PCSE parameter
files.

Finally, several data providers exist for retrieving crop, soil and site parameter values from the
database of the Crop Growth Monitoring System including data providers for a CGMS8, CGMS12 and
CGMS14/CGMS18 databases.

As described earlier, PCSE needs parameters to define the soil, the crop and and additional ancillary
class of parameters called ‘site’. Nevertheless, the different modules in PCSE have different needs, some
need access to crop parameters only, but some need to combine parameter values from different sets.
For example, the root dynamics module computes the maximum root depth as the minimum of the crop
maximum root depth (a crop parameter) and the soil maximum root depth (a soil parameter).

The facilitate accessing different parameters from different parameter sets, all parameters are combined
using a ParameterProvider object which provides unified access to all available parameters. Moreover,
parameters from different sources can be easily combined in the ParameterProvider given that each pa-
rameter set uses the basic key/value pair principles for accessing names and values:

>>> import os
>>> import sqlalchemy as sa
>>> from pcse.fileinput import CABOFileReader, PCSEFileReader
>>> from pcse.base import ParameterProvider
>>> from pcse.db.pcse import fetch_sitedata
>>> import pcse.settings

Retrieve crop data from a CABO file
>>> cropfile = os.path.join(data_dir, 'sug0601.crop')
>>> crop = CABOFileReader(cropfile)

Retrieve soildata from a PCSE file
>>> soilfile = os.path.join(data_dir, 'lintul3_springwheat.soil')
>>> soil = PCSEFileReader(soilfile)

Retrieve site data from the PCSE demo DB
>>> db_location = os.path.join(pcse.settings.PCSE_USER_HOME, "pcse.db")
>>> db_engine = sa.create_engine("sqlite:///" + db_location)
>>> db_metadata = sa.MetaData(db_engine)
>>> site = fetch_sitedata(db_metadata, grid=31031, year=2000)

Combine everything into one ParameterProvider object and print some values
>>> parprov = ParameterProvider(sitedata=site, soildata=soil, cropdata=crop)
>>> print(parprov["AMAXTB"]) # maximum leaf assimilation rate

(continues on next page)

4.1. Reference Guide 49

PCSE Documentation, Release 5.5

(continued from previous page)

[0.0, 22.5, 1.0, 45.0, 1.13, 45.0, 1.8, 36.0, 2.0, 36.0]
>>> print(parprov["DRATE"]) # maximum soil drainage rate
30.0
>>> print(parprov["WAV"]) # site-specific initial soil water amount
10.0

Data providers for agromanagement

Similar to weather and parameter values, there are several data providers for agromanagement. The
structure of the inputs for agromanagement is more complex compared to parameter values or weather
variables.

The most comprehensive way to define agromanagement in PCSE is to use the YAML structure that was
described in the section above on defining agromanagement. For reading this datastructure the YAMLA-
groManagementReader module is available which can be provided directly as input into the Engine.

For reading Agromanagement input from a CGMS database see the sections on the database tools CGMS.
Note that the support for defining agromanagement in CGMS databases is limited to crop calendars only.
The CGMS database has no support for defining state and timed events yet.

4.1.7 Global PCSE settings

PCSE has a number of settings that define some global PCSE behaviour. An example of a global setting
is the PCSE_USER_HOME variable which is used to define the home folder of the user. The settings
are stored in two files: 1) default_settings.py which can be found in the PCSE installation folder under
settings/ and should not be changed. 2) user_settings.py which can be found in the .pcse folder in the user
home directory. Under Windows this is typically c:\users\<username>\.pcse while under Linux systems
this is typically ‘/home/<username>/.pcse’.

Changing the PCSE global settings can be done by editing the file user_settings.py, uncommenting the
entries that should be changed and changing its value. Note that dependencies in the configuration file
should be respected as the default settings and user settings are parsed separately.

Adding PCSE global settings can be done by adding new entries to the user_settings.py file. Note that
settings should be defined as ALL_CAPS. Variable names in the settings file that start with ‘_’ will be
ignored, while any other variable names will generate a warning and be neglected.

If the user settings file is corrupted and PCSE fails to start, then the best option is to delete the
user_settings.py file from the .pcse folder in the user home directory. The next time PCSE starts, the
user_settings.py will be regenerated from the default settings with all settings commented out.

Within PCSE all settings can be easily accessed by importing the settings module:

>>> import pcse.settings
>>> pcse.settings.PCSE_USER_HOME
'C:\\Users\\wit015\\.pcse'
>>> pcse.settings.METEO_CACHE_DIR
'C:\\Users\\wit015\\.pcse\\meteo_cache'

50 Chapter 4. Reference guide

CHAPTER

FIVE

CODE DOCUMENTATION

5.1 Code documentation

5.1.1 How to read

The API documentation provides a description of the interface and internals of all SimulationObjects,
AncillaryObjects and utility routines available in the PCSE source distribution. All SimulationObjects
and AncillaryObjects are described using the same structure:

1. A short description of the object

2. The positional parameters and keywords specified in the interface.

3. A table specifying the simulation parameters needed for the simulation

4. A table specifying the state variables of the SimulationObject

5. A table specifying the rate variables of the SimulationObject

6. Signals sent or received by the SimulationObject

7. External dependencies on state/rate variables of other SimulationObjects.

8. The exceptions that are raised under which conditions.

One or more of these sections may be excluded when they are not appropriate for the SimulationObject
that is described.

The table specifying the simulation parameters has the following columns:

1. The name of the parameter.

2. A description of the parameter.

3. The type of the parameter. This is provided as a three-character code with the following interpre-
tation. The first character indicates of the parameter is a scalar (S) or table (T) parameter. The
second and third character indicate whether this parameter should be present in the timerdata ‘Ti’,
cropdata ‘Cr’, soildata ‘So’ or sitedata ‘Si’ dictionary.

4. The physical unit of the parameter.

The tables specifying state/rate variables have the following columns:

1. The name of the variable.

2. A description of the variable.

3. Whether the variable is published in the kiosk or not: Y|N

51

PCSE Documentation, Release 5.5

4. The physical unit of the variable.

Finally, all public methods of all objects are described as well.

5.1.2 Engine and models

The PCSE Engine provides the environment where SimulationObjects are ‘living’. The engine takes
care of reading the model configuration, initializing model components (e.g. groups of SimulationOb-
jects), driving the simulation forward by calling the SimulationObjects, calling the agromanagement unit,
keeping track of time and providing the weather data needed.

Models are treated together with the Engine, because models are simply pre-configured Engines. Any
model can be started by starting the Engine with the appropriate configuration file. The only difference is
that models can have methods that deal with specific characteristics of a model. This kind of functionality
cannot be implemented in the Engine because the model details are not known beforehand.

class pcse.engine.CGMSEngine(**kwargs)
Engine to mimic CGMS behaviour.

The original CGMS did not terminate when the crop cycles was finished but instead continued
with its simulation cycle but without altering the crop and soil components. This had the effect
that after the crop cycle finished, all state variables were kept at the same value while the day
counter increased. This behaviour is useful for two reasons:

1. CGMS generally produces dekadal output and when a day-of-maturity or day-of-harvest does
not coincide with a dekad boundary the final simulation values remain available and are stored
at the next dekad.

2. When aggregating spatial simulations with variability in day-of-maturity or day-of-harvest it
ensures that records are available in the database tables. So GroupBy clauses in SQL queries
produce the right results when computing spatial averages.

The difference with the Engine are:

1. Crop rotations are not supported

2. After a CROP_FINISH signal, the engine will continue, updating the timer but the soil, crop
and agromanagement will not execute their simulation cycles. As a consequence, all state
variables will retain their value.

3. TERMINATE signals have no effect.

4. CROP_FINISH signals will never remove the CROP SimulationObject.

5. run() and run_till_terminate() are not supported, only run_till() is supported.

run(days=1)
Advances the system state with given number of days

run_till(rday)
Runs the system until rday is reached.

run_till_terminate()

Runs the system until a terminate signal is sent.

class pcse.engine.Engine(**kwargs)
Simulation engine for simulating the combined soil/crop system.

52 Chapter 5. Code documentation

PCSE Documentation, Release 5.5

Parameters

• parameterprovider – A ParameterProvider object providing model param-
eters as key/value pairs. The parameterprovider encapsulates the different pa-
rameter sets for crop, soil and site parameters.

• weatherdataprovider – An instance of a WeatherDataProvider that can re-
turn weather data in a WeatherDataContainer for a given date.

• agromanagement – AgroManagement data. The data format is described in
the section on agronomic management.

• config – A string describing the model configuration file to use. By only
giving a filename PCSE assumes it to be located in the ‘conf/’ folder in the
main PCSE folder. If you want to provide you own configuration file, specify
it as an absolute or a relative path (e.g. with a leading ‘.’)

Engine handles the actual simulation of the combined soil- crop system. The central part of the
Engine is the soil water balance which is continuously simulating during the entire run. In con-
trast, CropSimulation objects are only initialized after receiving a “CROP_START” signal from
the AgroManagement unit. From that point onward, the combined soil-crop is simulated including
the interactions between the soil and crop such as root growth and transpiration.

Similarly, the crop simulation is finalized when receiving a “CROP_FINISH” signal. At that mo-
ment the finalize() section on the cropsimulation is executed. Moreover, the “CROP_FINISH”
signal can specify that the crop simulation object should be deleted from the hierarchy. The latter
is useful for further extensions of PCSE for running crop rotations.

Finally, the entire simulation is terminated when a “TERMINATE” signal is received. At that
point, the finalize() section on the water balance is executed and the simulation stops.

Signals handled by Engine:

Engine handles the following signals:

• CROP_START: Starts an instance of CropSimulation for simulating crop growth. See
the _on_CROP_START handler for details.

• CROP_FINISH: Runs the finalize() section an instance of CropSimulation and optionally
deletes the cropsimulation instance. See the _on_CROP_FINISH handler for details.

• TERMINATE: Runs the finalize() section on the waterbalance module and terminates
the entire simulation. See the _on_TERMINATE handler for details.

• OUTPUT: Preserves a copy of the value of selected state/rate variables during simulation
for later use. See the _on_OUTPUT handler for details.

• SUMMARY_OUTPUT: Preserves a copy of the value of selected state/rate variables for
later use. Summary output is usually requested only at the end of the crop simulation.
See the _on_SUMMARY_OUTPUT handler for details.

get_output()

Returns the variables have have been stored during the simulation.

If no output is stored an empty list is returned. Otherwise, the output is returned as a list of
dictionaries in chronological order. Each dictionary is a set of stored model variables for a
certain date.

5.1. Code documentation 53

PCSE Documentation, Release 5.5

get_summary_output()

Returns the summary variables have have been stored during the simulation.

get_terminal_output()

Returns the terminal output variables have have been stored during the simulation.

run(days=1)
Advances the system state with given number of days

run_till(rday)
Runs the system until rday is reached.

run_till_terminate()

Runs the system until a terminate signal is sent.

set_variable(varname, value)
Sets the value of the specified state or rate variable.

Parameters

• varname – Name of the variable to be updated (string).

• value – Value that it should be updated to (float)

Returns
a dict containing the increments of the variables that were updated (new - old).
If the call was unsuccessful in finding the class method (see below) it will return
an empty dict.

Note that ‘setting’ a variable (e.g. updating a model state) is much more complex than just
getting a variable, because often some other internal variables (checksums, related state vari-
ables) must be updated as well. As there is no generic rule to ‘set’ a variable it is up to the
model designer to implement the appropriate code to do the update.

The implementation of set_variable() works as follows. First it will recursively search for a
class method on the simulationobjects with the name _set_variable_<varname> (case sen-
sitive). If the method is found, it will be called by providing the value as input.

So for updating the crop leaf area index (varname ‘LAI’) to value ‘5.0’, the call will be:
set_variable(‘LAI’, 5.0). Internally, this call will search for a class method _set_variable_LAI
which will be executed with the value ‘5.0’ as input.

class pcse.models.ALCEPAS(**kwargs)
ALCEPAS Onion growth model.

class pcse.models.FAO_WRSI(**kwargs)
Convenience class for computing actual crop water use using the Water Requirements Satisfaction
Index with a (modified) FAO WRSI approach.

Parameters

• parameterprovider – A ParameterProvider instance providing all parameter
values

• weatherdataprovider – A WeatherDataProvider object

• agromanagement – Agromanagement data

54 Chapter 5. Code documentation

PCSE Documentation, Release 5.5

class pcse.models.LINGRA_NWLP_FD(**kwargs)

class pcse.models.LINGRA_PP(**kwargs)

class pcse.models.LINGRA_WLP_FD(**kwargs)

class pcse.models.LINTUL3(**kwargs)
The LINTUL model (Light INTerception and UtiLisation) is a simple general crop model, which
simulates dry matter production as the result of light interception and utilization with a constant
light use efficiency.

LINTUL3 simulates crop growth under water-limited and nitrogen-limited conditions

Parameters

• parameterprovider – A ParameterProvider object providing model param-
eters as key/value pairs. The parameterprovider encapsulates the different pa-
rameter sets for crop, soil and site parameters.

• weatherdataprovider – An instance of a WeatherDataProvider that can re-
turn weather data in a WeatherDataContainer for a given date.

• agromanagement – AgroManagement data. The data format is described in
the section on agronomic management.

pcse.models.Wofost71_PP

alias of Wofost72_PP

pcse.models.Wofost71_WLP_FD

alias of Wofost72_WLP_FD

class pcse.models.Wofost72_PP(**kwargs)
Convenience class for running WOFOST7.2 Potential Production.

Parameters

• parameterprovider – A ParameterProvider instance providing all parameter
values

• weatherdataprovider – A WeatherDataProvider object

• agromanagement – Agromanagement data

class pcse.models.Wofost72_Phenology(**kwargs)
Convenience class for running WOFOST7.2 phenology only.

Parameters

• parameterprovider – A ParameterProvider instance providing all parameter
values

• weatherdataprovider – A WeatherDataProvider object

• agromanagement – Agromanagement data

class pcse.models.Wofost72_WLP_FD(**kwargs)
Convenience class for running WOFOST7.2 water-limited production.

Parameters

5.1. Code documentation 55

PCSE Documentation, Release 5.5

• parameterprovider – A ParameterProvider instance providing all parameter
values

• weatherdataprovider – A WeatherDataProvider object

• agromanagement – Agromanagement data

class pcse.models.Wofost80_NWLP_FD_beta(**kwargs)
Convenience class for running WOFOST8.0 nutrient and water-limited production

Parameters

• parameterprovider – A ParameterProvider instance providing all parameter
values

• weatherdataprovider – A WeatherDataProvider object

• agromanagement – Agromanagement data

class pcse.models.Wofost80_PP_beta(**kwargs)
Convenience class for running WOFOST8.0 potential production (includes NPK dynamics)

Parameters

• parameterprovider – A ParameterProvider instance providing all parameter
values

• weatherdataprovider – A WeatherDataProvider object

• agromanagement – Agromanagement data

class pcse.models.Wofost80_WLP_FD_beta(**kwargs)
Convenience class for running WOFOST8.0 water-limited production (includes NPK dynamics)

Parameters

• parameterprovider – A ParameterProvider instance providing all parameter
values

• weatherdataprovider – A WeatherDataProvider object

• agromanagement – Agromanagement data

5.1.3 Agromanagement modules

The routines below implement the agromanagement system in PCSE including crop calendars, rotations,
state and timed events. For reading agromanagement data from a file or a database structure see the
sections on the reading file input and the database tools.

class pcse.agromanager.AgroManager(**kwargs)
Class for continuous AgroManagement actions including crop rotations and events.

See also the documentation for the classes CropCalendar, TimedEventDispatcher and StateEvent-
Dispatcher.

The AgroManager takes care of executing agromanagent actions that typically occur on agricultural
fields including planting and harvesting of the crop, as well as management actions such as fertilizer
application, irrigation, mowing and spraying.

56 Chapter 5. Code documentation

PCSE Documentation, Release 5.5

The agromanagement during the simulation is implemented as a sequence of campaigns. Cam-
paigns start on a prescribed calendar date and finalize when the next campaign starts. The simula-
tion ends either explicitly by provided a trailing empty campaign or by deriving the end date from
the crop calendar and timed events in the last campaign. See also the section below on end_date
property.

Each campaign is characterized by zero or one crop calendar, zero or more timed events and zero
or more state events. The structure of the data needed as input for AgroManager is most easily
understood with the example (in YAML) below. The definition consists of three campaigns, the
first starting on 1999-08-01, the second starting on 2000-09-01 and the last campaign starting on
2001-03-01. The first campaign consists of a crop calendar for winter-wheat starting with sowing
at the given crop_start_date. During the campaign there are timed events for irrigation at 2000-
05-25 and 2000-06-30. Moreover, there are state events for fertilizer application (event_signal:
apply_npk) given by development stage (DVS) at DVS 0.3, 0.6 and 1.12.

The second campaign has no crop calendar, timed events or state events. This means that this
is a period of bare soil with only the water balance running. The third campaign is for fodder
maize sown at 2001-04-15 with two series of timed events (one for irrigation and one for N/P/K
application) and no state events. The end date of the simulation in this case will be 2001-11-01
(2001-04-15 + 200 days).

An example of an agromanagement definition file:

AgroManagement:
- 1999-08-01:

CropCalendar:
crop_name: wheat
variety_name: winter-wheat
crop_start_date: 1999-09-15
crop_start_type: sowing
crop_end_date:
crop_end_type: maturity
max_duration: 300

TimedEvents:
- event_signal: irrigate

name: Timed irrigation events
comment: All irrigation amounts in cm
events_table:
- 2000-05-25: {irrigation_amount: 3.0}
- 2000-06-30: {irrigation_amount: 2.5}

StateEvents:
- event_signal: apply_npk

event_state: DVS
zero_condition: rising
name: DVS-based N/P/K application table
comment: all fertilizer amounts in kg/ha
events_table:
- 0.3: {N_amount : 1, P_amount: 3, K_amount: 4}
- 0.6: {N_amount: 11, P_amount: 13, K_amount: 14}
- 1.12: {N_amount: 21, P_amount: 23, K_amount: 24}

- 2000-09-01:
CropCalendar:

(continues on next page)

5.1. Code documentation 57

PCSE Documentation, Release 5.5

(continued from previous page)

TimedEvents:
StateEvents

- 2001-03-01:
CropCalendar:

crop_name: maize
variety_name: fodder-maize
crop_start_date: 2001-04-15
crop_start_type: sowing
crop_end_date:
crop_end_type: maturity
max_duration: 200

TimedEvents:
- event_signal: irrigate

name: Timed irrigation events
comment: All irrigation amounts in cm
events_table:
- 2001-06-01: {irrigation_amount: 2.0}
- 2001-07-21: {irrigation_amount: 5.0}
- 2001-08-18: {irrigation_amount: 3.0}
- 2001-09-19: {irrigation_amount: 2.5}

- event_signal: apply_npk
name: Timed N/P/K application table
comment: All fertilizer amounts in kg/ha
events_table:
- 2001-05-25: {N_amount : 50, P_amount: 25, K_amount: 22}
- 2001-07-05: {N_amount : 70, P_amount: 35, K_amount: 32}

StateEvents:

property end_date

Retrieves the end date of the agromanagement sequence, e.g. the last simulation date.

Returns
a date object

Getting the last simulation date is more complicated because there are two options.

1. Adding an explicit trailing empty campaign

The first option is to explicitly define the end date of the simulation by adding a ‘trailing
empty campaign’ to the agromanagement definition. An example of an agromanagement
definition with a ‘trailing empty campaigns’ (YAML format) is given below. This example
will run the simulation until 2001-01-01:

Version: 1.0
AgroManagement:
- 1999-08-01:

CropCalendar:
crop_name: winter-wheat
variety_name: winter-wheat
crop_start_date: 1999-09-15
crop_start_type: sowing

(continues on next page)

58 Chapter 5. Code documentation

PCSE Documentation, Release 5.5

(continued from previous page)

crop_end_date:
crop_end_type: maturity
max_duration: 300

TimedEvents:
StateEvents:

- 2001-01-01:

Note that in configurations where the last campaign contains a definition for state events, a
trailing empty campaign must be provided because the end date cannot be determined. The
following campaign definition will therefore lead to an error:

Version: 1.0
AgroManagement:
- 2001-01-01:

CropCalendar:
crop_name: maize
variety_name: fodder-maize
crop_start_date: 2001-04-15
crop_start_type: sowing
crop_end_date:
crop_end_type: maturity
max_duration: 200

TimedEvents:
StateEvents:
- event_signal: apply_npk

event_state: DVS
zero_condition: rising
name: DVS-based N/P/K application table
comment: all fertilizer amounts in kg/ha
events_table:
- 0.3: {N_amount : 1, P_amount: 3, K_amount: 4}
- 0.6: {N_amount: 11, P_amount: 13, K_amount: 14}
- 1.12: {N_amount: 21, P_amount: 23, K_amount: 24}

2. Without an explicit trailing campaign

The second option is that there is no trailing empty campaign and in that case the end date of
the simulation is retrieved from the crop calendar and/or the timed events that are scheduled.
In the example below, the end date will be 2000-08-05 as this is the harvest date and there
are no timed events scheduled after this date:

Version: 1.0
AgroManagement:
- 1999-09-01:

CropCalendar:
crop_name: wheat
variety_name: winter-wheat
crop_start_date: 1999-10-01
crop_start_type: sowing
crop_end_date: 2000-08-05

(continues on next page)

5.1. Code documentation 59

PCSE Documentation, Release 5.5

(continued from previous page)

crop_end_type: harvest
max_duration: 330

TimedEvents:
- event_signal: irrigate

name: Timed irrigation events
comment: All irrigation amounts in cm
events_table:
- 2000-05-01: {irrigation_amount: 2, efficiency: 0.7}
- 2000-06-21: {irrigation_amount: 5, efficiency: 0.7}
- 2000-07-18: {irrigation_amount: 3, efficiency: 0.7}

StateEvents:

In the case that there is no harvest date provided and the crop runs till maturity, the end date
from the crop calendar will be estimated as the crop_start_date plus the max_duration.

initialize(kiosk, agromanagement)
Initialize the AgroManager.

Parameters

• kiosk – A PCSE variable Kiosk

• agromanagement – the agromanagement definition, see the example above
in YAML.

property ndays_in_crop_cycle

Returns the number of days of the current cropping cycle.

Returns zero if no crop cycle is active.

property start_date

Retrieves the start date of the agromanagement sequence, e.g. the first simulation date

Returns
a date object

class pcse.agromanager.CropCalendar(**kwargs)
A crop calendar for managing the crop cycle.

A CropCalendar object is responsible for storing, checking, starting and ending the crop cycle.
The crop calendar is initialized by providing the parameters needed for defining the crop cycle.
At each time step the instance of CropCalendar is called and at dates defined by its parameters it
initiates the appropriate actions:

• sowing/emergence: A crop_start signal is dispatched including the parameters needed to
start the new crop simulation object

• maturity/harvest: the crop cycle is ended by dispatching a crop_finish signal with the appro-
priate parameters.

Parameters

• kiosk – The PCSE VariableKiosk instance

• crop_name – String identifying the crop

• variety_name – String identifying the variety

60 Chapter 5. Code documentation

PCSE Documentation, Release 5.5

• crop_start_date – Start date of the crop simulation

• crop_start_type – Start type of the crop simulation (‘sowing’, ‘emergence’)

• crop_end_date – End date of the crop simulation

• crop_end_type – End type of the crop simulation (‘harvest’, ‘maturity’, ‘ear-
liest’)

• max_duration – Integer describing the maximum duration of the crop cycle

Returns
A CropCalendar Instance

get_end_date()

Return the end date of the crop cycle.

This is either given as the harvest date or calculated as crop_start_date + max_duration

Returns
a date object

get_start_date()

Returns the start date of the cycle. This is always self.crop_start_date

Returns
the start date

validate(campaign_start_date, next_campaign_start_date)
Validate the crop calendar internally and against the interval for the agricultural campaign.

Parameters

• campaign_start_date – start date of this campaign

• next_campaign_start_date – start date of the next campaign

class pcse.agromanager.TimedEventsDispatcher(**kwargs)
Takes care handling events that are connected to a date.

Events are handled by dispatching a signal (taken from the signals module) and providing the
relevant parameters with the signal. TimedEvents can be most easily understood when looking at
the definition in the agromanagement file. The following section (in YAML) provides the definition
of two instances of TimedEventsDispatchers:

TimedEvents:
- event_signal: irrigate

name: Timed irrigation events
comment: All irrigation amounts in mm
events_table:
- 2000-01-01: {irrigation_amount: 20}
- 2000-01-21: {irrigation_amount: 50}
- 2000-03-18: {irrigation_amount: 30}
- 2000-03-19: {irrigation_amount: 25}

- event_signal: apply_npk
name: Timed N/P/K application table
comment: All fertilizer amounts in kg/ha

(continues on next page)

5.1. Code documentation 61

PCSE Documentation, Release 5.5

(continued from previous page)

events_table:
- 2000-01-10: {N_amount : 10, P_amount: 5, K_amount: 2}
- 2000-01-31: {N_amount : 30, P_amount: 15, K_amount: 12}
- 2000-03-25: {N_amount : 50, P_amount: 25, K_amount: 22}
- 2000-04-05: {N_amount : 70, P_amount: 35, K_amount: 32}

Each TimedEventDispatcher is defined by an event_signal, an optional name, an optional comment
and the events_table. The events_table is list which provides for each date the parameters that
should be dispatched with the given event_signal.

get_end_date()

Returns the last date for which a timed event is given

validate(campaign_start_date, next_campaign_start_date)
Validates the timed events given the campaign window

Parameters

• campaign_start_date – Start date of the campaign

• next_campaign_start_date – Start date of the next campaign, can be
None

class pcse.agromanager.StateEventsDispatcher(**kwargs)
Takes care handling events that are connected to a model state variable.

Events are handled by dispatching a signal (taken from the signals module) and providing the
relevant parameters with the signal. StateEvents can be most easily understood when looking at
the definition in the agromanagement file. The following section (in YAML) provides the definition
of two instances of StateEventsDispatchers:

StateEvents:
- event_signal: apply_npk

event_state: DVS
zero_condition: rising
name: DVS-based N/P/K application table
comment: all fertilizer amounts in kg/ha
events_table:
- 0.3: {N_amount : 1, P_amount: 3, K_amount: 4}
- 0.6: {N_amount: 11, P_amount: 13, K_amount: 14}
- 1.12: {N_amount: 21, P_amount: 23, K_amount: 24}

- event_signal: irrigate
event_state: SM
zero_condition: falling
name: Soil moisture driven irrigation scheduling
comment: all irrigation amounts in cm of water
events_table:
- 0.15: {irrigation_amount: 20}

Each StateEventDispatcher is defined by an event_signal, an event_state (e.g. the model state that
triggers the event) and a zero condition. Moreover, an optional name and an optional comment can
be provided. Finally the events_table specifies at which model state values the event occurs. The

62 Chapter 5. Code documentation

PCSE Documentation, Release 5.5

events_table is a list which provides for each state the parameters that should be dispatched with
the given event_signal.

For finding the time step at which a state event occurs PCSE uses the concept of zero-crossing.
This means that a state event is triggered when (model_state - event_state) equals or crosses zero.
The zero_condition defines how this crossing should take place. The value of zero_condition can
be:

• rising: the event is triggered when (model_state - event_state) goes from a negative
value towards

zero or a positive value.

• falling: the event is triggered when (model_state - event_state) goes from a positive
value towards

zero or a negative value.

• either: the event is triggered when (model_state - event_state) crosses or reaches zero
from any

direction.

The impact of the zero_condition can be illustrated using the example definitions above. The
development stage of the crop (DVS) only increases from 0 at emergence to 2 at maturity. A
StateEvent set on the DVS (first example) will therefore logically have a zero_condition ‘rising’
although ‘either’ could be used as well. A DVS-based event will not occur with zero_condition set
to ‘falling’ as the value of DVS will not decrease.

The soil moisture (SM) however can both increase and decrease. A StateEvent for applying irriga-
tion (second example) will therefore be specified with a zero_condition ‘falling’ because the event
must be triggered when the soil moisture level reaches or crosses the minimum level specified by
the events_table. Note that if we set the zero_condition to ‘either’ the event would probably occur
again the next time-step because the irrigation amount increase the soil moisture and (model_state
- event_state) crosses zero again but from the other direction.

5.1.4 The Timer

class pcse.timer.Timer(**kwargs)
This class implements a basic timer for use with the WOFOST crop model.

This object implements a simple timer that increments the current time with a fixed time-step of
one day at each call and returns its value. Moreover, it generates OUTPUT signals in daily, dekadal
or monthly time-steps that can be caught in order to store the state of the simulation for later use.

Initializing the timer:

timer = Timer(start_date, kiosk, final_date, mconf)
CurrentDate = timer()

Signals sent or handled:

• “OUTPUT”: sent when the condition for generating output is True which depends on the
output type and interval.

initialize(kiosk, start_date, end_date, mconf)

Parameters

• day – Start date of the simulation

5.1. Code documentation 63

PCSE Documentation, Release 5.5

• kiosk – Variable kiosk of the PCSE instance

• end_date – Final date of the simulation. For example, this date represents
(START_DATE + MAX_DURATION) for a single cropping season. This
date is not the harvest date because signalling harvest is taken care of by the
AgroManagement module.

• mconf – A ConfigurationLoader object, the timer needs access to the con-
figuration attributes mconf.OUTPUT_INTERVAL, mconf.OUTPUT_VARS
and mconf.OUTPUT_INTERVAL_DAYS

5.1.5 The waterbalance

The PCSE distribution provides several waterbalance modules:

1. WaterbalancePP which is used for simulation under non-water-limited production

2. WaterbalanceFD which is used for simulation of water-limited production under conditions
of freely draining soils

3. The SnowMAUS for simulation the build-up and melting of the snow cover.

4. A multi-layer waterbalance implementing simulations for potential conditions, water-limited
free drainage conditions and water-limited groundwater conditions (in case of shallow ground
water tables). This waterbalance is in a prototype stage and not yet usable, although the source
code is available in PCSE.

class pcse.soil.WaterbalancePP(**kwargs)
Fake waterbalance for simulation under potential production.

Keeps the soil moisture content at field capacity and only accumulates crop transpiration and soil
evaporation rates through the course of the simulation

class pcse.soil.WaterbalanceFD(**kwargs)
Waterbalance for freely draining soils under water-limited production.

The purpose of the soil water balance calculations is to estimate the daily value of the soil moisture
content. The soil moisture content influences soil moisture uptake and crop transpiration.

The dynamic calculations are carried out in two sections, one for the calculation of rates of change
per timestep (= 1 day) and one for the calculation of summation variables and state variables.
The water balance is driven by rainfall, possibly buffered as surface storage, and evapotranspira-
tion. The processes considered are infiltration, soil water retention, percolation (here conceived as
downward water flow from rooted zone to second layer), and the loss of water beyond the maximum
root zone.

The textural profile of the soil is conceived as homogeneous. Initially the soil profile consists of two
layers, the actually rooted soil and the soil immediately below the rooted zone until the maximum
rooting depth is reached by roots(soil and crop dependent). The extension of the root zone from
the initial rooting depth to maximum rooting depth is described in Root_Dynamics class. From
the moment that the maximum rooting depth is reached the soil profile may be described as a one
layer system depending if the roots are able to penetrate the entire profile. If not a non-rooted part
remains at the bottom of the profile.

The class WaterbalanceFD is derived from WATFD.FOR in WOFOST7.1 with the exception that
the depth of the soil is now completely determined by the maximum soil depth (RDMSOL) and
not by the minimum of soil depth and crop maximum rooting depth (RDMCR).

64 Chapter 5. Code documentation

PCSE Documentation, Release 5.5

Simulation parameters:

Name Description Type Unit
SMFCF Field capacity of the

soil
SSo

•

SM0 Porosity of the soil SSo
•

SMW Wilting point of the
soil

SSo
•

CRAIRC Soil critical air con-
tent (waterlogging)

SSo
•

SOPE maximum percola-
tion rate root zone

SSo 𝑐𝑚𝑑𝑎𝑦−1

KSUB maximum percola-
tion rate subsoil

SSo 𝑐𝑚𝑑𝑎𝑦−1

RDMSOL Soil rootable depth SSo cm
IFUNRN Indicates whether

non-infiltrating frac-
tion of rain is a
function of storm
size (1) or not (0)

SSi
•

SSMAX Maximum surface
storage

SSi cm

SSI Initial surface storage SSi cm
WAV Initial amount of wa-

ter in total soil profile
SSi cm

NOTINF Maximum fraction of
rain not-infiltrating
into the soil

SSi
•

SMLIM Initial maximum
moisture content in
initial rooting depth
zone.

SSi
•

State variables:

5.1. Code documentation 65

PCSE Documentation, Release 5.5

Name Description Pbl Unit
SM Volumetric moisture

content in root zone
Y

•

SS Surface storage (layer
of water on surface)

N cm

SSI Initial urface storage N cm
W Amount of water in

root zone
N cm

WI Initial amount of wa-
ter in the root zone

N cm

WLOW Amount of water
in the subsoil (be-
tween current rooting
depth and maximum
rootable depth)

N cm

WLOWI Initial amount of wa-
ter in the subsoil

cm

WWLOW Total amount of wa-
ter in the soil profile
WWLOW = WLOW
+ W

N cm

WTRAT Total water lost
as transpiration as
calculated by the
water balance. This
can be different from
the CTRAT variable
which only counts
transpiration for a
crop cycle.

N cm

EVST Total evaporation
from the soil surface

N cm

EVWT Total evaporation
from a water surface

N cm

TSR Total surface runoff N cm
RAINT Total amount of rain-

fall (eff + non-eff)
N cm

WDRT Amount of water
added to root zone
by increase of root
growth

N cm

TOTINF Total amount of infil-
tration

N cm

TOTIRR Total amount of ef-
fective irrigation

N cm

PERCT Total amount of wa-
ter percolating from
rooted zone to subsoil

N cm

LOSST Total amount of water
lost to deeper soil

N cm

DSOS Days since oxygen
stress, accumulates
the number of con-
secutive days of
oxygen stress

Y
•

WBALRT Checksum for root
zone waterbalance.
Will be calculated
within finalize(),
abs(WBALRT) >
0.0001 will raise a
WaterBalanceError

N cm

WBALTT Checksum for to-
tal waterbalance.
Will be calculated
within finalize(),
abs(WBALTT) >
0.0001 will raise a
WaterBalanceError

N cm

66 Chapter 5. Code documentation

PCSE Documentation, Release 5.5

Rate variables:

External dependencies:

Name Description Provided by Unit
TRA Crop transpiration rate Evapotranspi-

ration
𝑐𝑚𝑑𝑎𝑦−1

EVSMX Maximum evaporation rate from a soil surface below the
crop canopy

Evapotranspi-
ration

𝑐𝑚𝑑𝑎𝑦−1

EVWMX Maximum evaporation rate from a water surface below
the crop canopy

Evapotranspi-
ration

𝑐𝑚𝑑𝑎𝑦−1

RD Rooting depth Root_dynamics cm

Exceptions raised:

A WaterbalanceError is raised when the waterbalance is not closing at the end of the simulation
cycle (e.g water has “leaked” away).

class pcse.soil.SnowMAUS(**kwargs)
Simple snow accumulation model for agrometeorological applications.

This is an implementation of the SnowMAUS model which describes the accumulation and melt
of snow due to precipitation, snowmelt and sublimation. The SnowMAUS model is designed to
keep track of the thickness of the layer of water that is present as snow on the surface, e.g. the
Snow Water Equivalent Depth (state variable SWEDEPTH [cm]). Conversion of the SWEDEPTH
to the actual snow depth (state variable SNOWDEPTH [cm]) is done by dividing the SWEDEPTH
with the snow density in [cm_water/cm_snow].

Snow density is taken as a fixed value despite the fact that the snow density is known to vary with
the type of snowfall, the temperature and the age of the snow pack. However, more complicated
algorithms for snow density would not be consistent with the simplicy of SnowMAUS.

A drawback of the current implementation is that there is no link to the water balance yet.

Reference: M. Trnka, E. Kocmánková, J. Balek, J. Eitzinger, F. Ruget, H. Formayer, P. Hlavinka,
A. Schaumberger, V. Horáková, M. Možný, Z. Žalud, Simple snow cover model for agrometeoro-
logical applications, Agricultural and Forest Meteorology, Volume 150, Issues 7–8, 15 July 2010,
Pages 1115-1127, ISSN 0168-1923

http://dx.doi.org/10.1016/j.agrformet.2010.04.012

Simulation parameters: (provide in crop, soil and sitedata dictionary)

5.1. Code documentation 67

http://dx.doi.org/10.1016/j.agrformet.2010.04.012

PCSE Documentation, Release 5.5

Name Description Type Unit
TMI-
NACCU1

Upper critical minimum temperature for snow accumula-
tion.

SSi ∘𝐶

TMI-
NACCU2

Lower critical minimum temperature for snow accumula-
tion

SSi ∘𝐶

TMINCRIT Critical minimum temperature for snow melt SSi ∘𝐶

TMAXCRIT Critical maximum temperature for snow melt SSi ∘𝐶

RMELT Melting rate per day per degree Celcius above the critical
minimum temperature.

SSi 𝑐𝑚∘𝐶−1𝑑𝑎𝑦−1

SC-
THRESH-
OLD

Snow water equivalent above which the sublimation is
taken into account.

SSi cm

SNOW-
DENSITY

Density of snow SSi cm/cm

SWEDEPTHI Initial depth of layer of water present as snow on the soil
surface

SSi cm

State variables:

Name Description Pbl Unit
SWEDEPTH Depth of layer of water present as snow on the surface N cm
SNOWDEPTH Depth of snow present on the surface. Y cm

Rate variables:

Name Description Pbl Unit
RSNOWACCUM Rate of snow accumulation N 𝑐𝑚𝑑𝑎𝑦−1

RSNOWSUBLIM Rate of snow sublimation N 𝑐𝑚𝑑𝑎𝑦−1

RSNOWMELT Rate of snow melting N 𝑐𝑚𝑑𝑎𝑦−1

5.1.6 Crop simulation processes for WOFOST

Phenology

class pcse.crop.phenology.DVS_Phenology(**kwargs)
Implements the algorithms for phenologic development in WOFOST.

Phenologic development in WOFOST is expresses using a unitless scale which takes the values 0
at emergence, 1 at Anthesis (flowering) and 2 at maturity. This type of phenological development
is mainly representative for cereal crops. All other crops that are simulated with WOFOST are
forced into this scheme as well, although this may not be appropriate for all crops. For example,
for potatoes development stage 1 represents the start of tuber formation rather than flowering.

Phenological development is mainly governed by temperature and can be modified by the effects of
day length and vernalization during the period before Anthesis. After Anthesis, only temperature
influences the development rate.

Simulation parameters

68 Chapter 5. Code documentation

PCSE Documentation, Release 5.5

Name Description Type Unit
TSUMEM Temperature sum

from sowing to emer-
gence

SCr ∘𝐶 day

TBASEM Base temperature for
emergence

SCr ∘𝐶

TEFFMX Maximum effective
temperature for
emergence

SCr ∘𝐶

TSUM1 Temperature sum
from emergence to
anthesis

SCr ∘𝐶 day

TSUM2 Temperature sum
from anthesis to
maturity

SCr ∘𝐶 day

IDSL Switch for pheno-
logical development
options temperature
only (IDSL=0),
including daylength
(IDSL=1) and in-
cluding vernalization
(IDSL>=2)

SCr SCr
•

DLO Optimal daylength
for phenological
development

SCr hr

DLC Critical daylength
for phenological
development

SCr hr

DVSI Initial development
stage at emergence.
Usually this is zero,
but it can be higher
for crops that are
transplanted (e.g.
paddy rice)

SCr
•

DVSEND Final development
stage

SCr
•

DTSMTB Daily increase in
temperature sum as
a function of daily
mean temperature.

TCr ∘𝐶

State variables

5.1. Code documentation 69

PCSE Documentation, Release 5.5

Name Description Pbl Unit
DVS Development stage Y

•

TSUM Temperature sum N ∘𝐶 day
TSUME Temperature sum for

emergence
N ∘𝐶 day

DOS Day of sowing N
•

DOE Day of emergence N
•

DOA Day of Anthesis N
•

DOM Day of maturity N
•

DOH Day of harvest N
•

STAGE Current pheno-
logical stage, can
take the folowing
values: emerg-
ing|vegetative|reproductive|mature

N
•

Rate variables

Name Description Pbl Unit
DTSUME Increase in temperature sum for emergence N ∘𝐶

DTSUM Increase in temperature sum for anthesis or maturity N ∘𝐶

DVR Development rate Y day-1

External dependencies:

None

Signals sent or handled

DVS_Phenology sends the crop_finish signal when maturity is reached and the end_type is ‘matu-
rity’ or ‘earliest’.

class pcse.crop.phenology.Vernalisation(**kwargs)
Modification of phenological development due to vernalisation.

The vernalization approach here is based on the work of Lenny van Bussel (2011), which in turn
is based on Wang and Engel (1998). The basic principle is that winter wheat needs a certain num-
ber of days with temperatures within an optimum temperature range to complete its vernalisation
requirement. Until the vernalisation requirement is fulfilled, the crop development is delayed.

The rate of vernalization (VERNR) is defined by the temperature response function VERNRTB.

70 Chapter 5. Code documentation

PCSE Documentation, Release 5.5

Within the optimal temperature range 1 day is added to the vernalisation state (VERN). The re-
duction on the phenological development is calculated from the base and saturated vernalisation
requirements (VERNBASE and VERNSAT). The reduction factor (VERNFAC) is scaled linearly
between VERNBASE and VERNSAT.

A critical development stage (VERNDVS) is used to stop the effect of vernalisation when this DVS
is reached. This is done to improve model stability in order to avoid that Anthesis is never reached
due to a somewhat too high VERNSAT. Nevertheless, a warning is written to the log file, if this
happens.

• Van Bussel, 2011. From field to globe: Upscaling of crop growth modelling. Wageningen
PhD thesis. http://edepot.wur.nl/180295

• Wang and Engel, 1998. Simulation of phenological development of wheat crops. Agric.
Systems 58:1 pp 1-24

Simulation parameters (provide in cropdata dictionary)

Name Description Type Unit
VERNSAT Saturated vernalisa-

tion requirements
SCr days

VERNBASE Base vernalisation re-
quirements

SCr days

VERNRTB Rate of vernalisation
as a function of daily
mean temperature.

TCr
•

VERNDVS Critical development
stage after which the
effect of vernalisation
is halted

SCr
•

State variables

Name Description Pbl Unit
VERN Vernalisation state N days
DOV Day when vernalisa-

tion requirements are
fulfilled.

N
•

ISVERNALISED Flag indicated that
vernalisation re-
quirement has been
reached

Y
•

Rate variables

5.1. Code documentation 71

http://edepot.wur.nl/180295

PCSE Documentation, Release 5.5

Name Description Pbl Unit
VERNR Rate of vernalisation N

•

VERNFAC Reduction factor on
development rate due
to vernalisation ef-
fect.

Y
•

External dependencies:

Name Description Provided by Unit
DVS Development Stage

Used only to deter-
mine if the critical
development stage
for vernalisation
(VERNDVS) is
reached.

Phenology
•

Partitioning

class pcse.crop.partitioning.DVS_Partitioning(**kwargs)
Class for assimilate partioning based on development stage (DVS).

DVS_partioning calculates the partitioning of the assimilates to roots, stems, leaves and storage
organs using fixed partitioning tables as a function of crop development stage. The available as-
similates are first split into below-ground and abovegrond using the values in FRTB. In a second
stage they are split into leaves (FLTB), stems (FSTB) and storage organs (FOTB).

Since the partitioning fractions are derived from the state variable DVS they are regarded state
variables as well.

Simulation parameters (To be provided in cropdata dictionary):

Name Description Type Unit
FRTB Partitioning to roots

as a function of devel-
opment stage.

TCr
•

FSTB Partitioning to stems
as a function of devel-
opment stage.

TCr
•

FLTB Partitioning to leaves
as a function of devel-
opment stage.

TCr
•

FOTB Partitioning to stor-
age organs as a func-
tion of development
stage.

TCr
•

72 Chapter 5. Code documentation

PCSE Documentation, Release 5.5

State variables

Name Description Pbl Unit
FR Fraction partitioned

to roots.
Y

•

FS Fraction partitioned
to stems.

Y
•

FL Fraction partitioned
to leaves.

Y
•

FO Fraction partitioned
to storage orgains

Y
•

Rate variables

None

Signals send or handled

None

External dependencies:

Name Description Provided by Unit
DVS Crop development

stage
DVS_Phenology

•

Exceptions raised

A PartitioningError is raised if the partitioning coefficients to leaves, stems and storage organs on
a given day do not add up to ‘1’.

CO2 Assimilation

class pcse.crop.assimilation.WOFOST_Assimilation(**kwargs)
Class implementing a WOFOST/SUCROS style assimilation routine.

WOFOST calculates the daily gross CO2 assimilation rate of a crop from the absorbed radiation
and the photosynthesis-light response curve of individual leaves. This response is dependent on
temperature and leaf age. The absorbed radiation is calculated from the total incoming radiation
and the leaf area. Daily gross CO2 assimilation is obtained by integrating the assimilation rates
over the leaf layers and over the day.

Simulation parameters

5.1. Code documentation 73

PCSE Documentation, Release 5.5

Name Description Type Unit
AMAXTB Max. leaf CO2 assim.

rate as a function of
of DVS

TCr kg ha-1hr-1

EFFTB Light use effic. sin-
gle leaf as a function
of daily mean temper-
ature

TCr kg ha-1hr-1/(J
m-2sec-1)

KDIFTB Extinction coefficient
for diffuse visible as
function of DVS

TCr
•

TMPFTB Reduction factor of
AMAX as function of
daily mean tempera-
ture.

TCr
•

TMNFTB Reduction factor of
AMAX as function of
daily minimum tem-
perature.

TCr
•

State and rate variables

WOFOST_Assimilation returns the potential gross assimilation rate ‘PGASS’ directly from the
__call__() method, but also includes it as a rate variable.

Rate variables:

Name Description Pbl Unit
PGASS Potential assimilation rate N kg CH2O ha-1day-1

Signals sent or handled

None

External dependencies:

Name Description Provided by Unit
DVS Crop development

stage
DVS_Phenology

•

LAI Leaf area index Leaf_dynamics
•

74 Chapter 5. Code documentation

PCSE Documentation, Release 5.5

Maintenance respiration

class pcse.crop.respiration.WOFOST_Maintenance_Respiration(**kwargs)
Maintenance respiration in WOFOST

WOFOST calculates the maintenance respiration as proportional to the dry weights of the plant or-
gans to be maintained, where each plant organ can be assigned a different maintenance coefficient.
Multiplying organ weight with the maintenance coeffients yields the relative maintenance respi-
ration (RMRES) which is than corrected for senescence (parameter RFSETB). Finally, the actual
maintenance respiration rate is calculated using the daily mean temperature, assuming a relative
increase for each 10 degrees increase in temperature as defined by Q10.

Simulation parameters: (To be provided in cropdata dictionary):

Name Description Type Unit
Q10 Relative increase in

maintenance repira-
tion rate with each 10
degrees increase in
temperature

SCr
•

RMR Relative maintenance
respiration rate for
roots

SCr kg CH2O kg-1d-1

RMS Relative maintenance
respiration rate for
stems

SCr kg CH2O kg-1d-1

RML Relative maintenance
respiration rate for
leaves

SCr kg CH2O kg-1d-1

RMO Relative maintenance
respiration rate for
storage organs

SCr kg CH2O kg-1d-1

State and rate variables:

WOFOSTMaintenanceRespiration returns the potential maintenance respiration PMRES
directly from the __call__() method, but also includes it as a rate variable within the object.

Rate variables:

Name Description Pbl Unit
PMRES Potential maintenance respiration rate N kg CH2O ha-1day-1

Signals send or handled

None

External dependencies:

5.1. Code documentation 75

PCSE Documentation, Release 5.5

Name Description Provided by Unit
DVS Crop development

stage
DVS_Phenology

•

WRT Dry weight of living
roots

WOFOST_Root_Dynamicskg ha-1

WST Dry weight of living
stems

WOFOST_Stem_Dynamicskg ha-1

WLV Dry weight of living
leaves

WOFOST_Leaf_Dynamicskg ha-1

WSO Dry weight of living
storage organs

WOFOST_Storage_Organ_Dynamicskg ha-1

Evapotranspiration

class pcse.crop.evapotranspiration.Evapotranspiration(**kwargs)
Calculation of potential evaporation (water and soil) rates and actual crop transpiration rate.

Simulation parameters:

76 Chapter 5. Code documentation

PCSE Documentation, Release 5.5

Name Description Type Unit
CFET Correction factor for

potential transpira-
tion rate.

SCr
•

DEPNR Dependency number
for crop sensitivity to
soil moisture stress.

SCr
•

KDIFTB Extinction coefficient
for diffuse visible as
function of DVS.

TCr
•

IOX Switch oxygen stress
on (1) or off (0)

SCr
•

IAIRDU Switch airducts on
(1) or off (0)

SCr
•

CRAIRC Critical air content
for root aeration

SSo
•

SM0 Soil porosity SSo
•

SMW Volumetric soil mois-
ture content at wilting
point

SSo
•

SMCFC Volumetric soil mois-
ture content at field
capacity

SSo
•

SM0 Soil porosity SSo
•

State variables

Note that these state variables are only assigned after finalize() has been run.

Name Description Pbl Unit
IDWST Nr of days with water

stress.
N

•

IDOST Nr of days with oxy-
gen stress.

N
•

Rate variables

5.1. Code documentation 77

PCSE Documentation, Release 5.5

Name Description Pbl Unit
EVWMX Maximum evapo-

ration rate from an
open water surface.

Y cm day-1

EVSMX Maximum evapora-
tion rate from a wet
soil surface.

Y cm day-1

TRAMX Maximum transpira-
tion rate from the
plant canopy

Y cm day-1

TRA Actual transpiration
rate from the plant
canopy

Y cm day-1

IDOS Indicates oxygen
stress on this day
(True|False)

N
•

IDWS Indicates water
stress on this day
(True|False)

N
•

RFWS Reduction factor for
water stress

N
•

RFOS Reduction factor for
oxygen stress

N
•

RFTRA Reduction factor for
transpiration (wat &
ox)

Y
•

Signals send or handled

None

External dependencies:

Name Description Provided by Unit
DVS Crop development

stage
DVS_Phenology

•

LAI Leaf area index Leaf_dynamics
•

SM Volumetric soil mois-
ture content

Waterbalance
•

pcse.crop.evapotranspiration.SWEAF(ET0, DEPNR)
Calculates the Soil Water Easily Available Fraction (SWEAF).

Parameters

• ET0 – The evapotranpiration from a reference crop.

78 Chapter 5. Code documentation

PCSE Documentation, Release 5.5

• DEPNR – The crop dependency number.

The fraction of easily available soil water between field capacity and wilting point is a function
of the potential evapotranspiration rate (for a closed canopy) in cm/day, ET0, and the crop group
number, DEPNR (from 1 (=drought-sensitive) to 5 (=drought-resistent)). The function SWEAF de-
scribes this relationship given in tabular form by Doorenbos & Kassam (1979) and by Van Keulen
& Wolf (1986; p.108, table 20) http://edepot.wur.nl/168025.

Leaf dynamics

class pcse.crop.leaf_dynamics.WOFOST_Leaf_Dynamics(**kwargs)
Leaf dynamics for the WOFOST crop model.

Implementation of biomass partitioning to leaves, growth and senenscence of leaves. WOFOST
keeps track of the biomass that has been partitioned to the leaves for each day (variable LV), which
is called a leaf class). For each leaf class the leaf age (variable ‘LVAGE’) and specific leaf area
(variable SLA) are also registered. Total living leaf biomass is calculated by summing the biomass
values for all leaf classes. Similarly, leaf area is calculated by summing leaf biomass times specific
leaf area (LV * SLA).

Senescense of the leaves can occur as a result of physiological age, drought stress or self-shading.

Simulation parameters (provide in cropdata dictionary)

Name Description Type Unit
RGR-
LAI

Maximum relative increase in LAI. SCr ha ha-1 d-
1

SPAN Life span of leaves growing at 35 Celsius SCr day
TBASE Lower threshold temp. for ageing of leaves SCr ∘𝐶

PERDL Max. relative death rate of leaves due to water stress SCr
TDWI Initial total crop dry weight SCr kg ha-1

KDIFTB Extinction coefficient for diffuse visible light as function of
DVS

TCr

SLATB Specific leaf area as a function of DVS TCr ha kg-1

State variables

5.1. Code documentation 79

http://edepot.wur.nl/168025

PCSE Documentation, Release 5.5

Name Description Pbl Unit
LV Leaf biomass per leaf

class
N kg ha-1

SLA Specific leaf area per
leaf class

N ha kg-1

LVAGE Leaf age per leaf
class

N day

LVSUM Sum of LV N kg ha-1

LAIEM LAI at emergence N
•

LASUM Total leaf area as sum
of LV*SLA, not in-
cluding stem and pod
area

N N
•

LAIEXP LAI value under the-
oretical exponential
growth

N
•

LAIMAX Maximum LAI
reached during
growth cycle

N
•

LAI Leaf area index, in-
cluding stem and pod
area

Y
•

WLV Dry weight of living
leaves

Y kg ha-1

DWLV Dry weight of dead
leaves

N kg ha-1

TWLV Dry weight of total
leaves (living + dead)

Y kg ha-1

Rate variables

80 Chapter 5. Code documentation

PCSE Documentation, Release 5.5

Name Description Pbl Unit
GRLV Growth rate leaves N kg ha-1day-1

DSLV1 Death rate leaves due
to water stress

N kg ha-1day-1

DSLV2 Death rate leaves due
to self-shading

N kg ha-1day-1

DSLV3 Death rate leaves due
to frost kill

N kg ha-1day-1

DSLV Maximum of
DLSV1, DSLV2,
DSLV3

N kg ha-1day-1

DALV Death rate leaves due
to aging.

N kg ha-1day-1

DRLV Death rate leaves
as a combination of
DSLV and DALV

N kg ha-1day-1

SLAT Specific leaf area for
current time step, ad-
justed for source/sink
limited leaf expan-
sion rate.

N ha kg-1

FYSAGE Increase in physio-
logical leaf age

N
•

GLAIEX Sink-limited leaf ex-
pansion rate (expo-
nential curve)

N ha ha-1day-1

GLASOL Source-limited
leaf expansion rate
(biomass increase)

N ha ha-1day-1

External dependencies:

5.1. Code documentation 81

PCSE Documentation, Release 5.5

Name Description Provided by Unit
DVS Crop development

stage
DVS_Phenology

•

FL Fraction biomass to
leaves

DVS_Partitioning
•

FR Fraction biomass to
roots

DVS_Partitioning
•

SAI Stem area index WOFOST_Stem_Dynamics
•

PAI Pod area index WOFOST_Storage_Organ_Dynamics
•

TRA Transpiration rate Evapotranspiration cm day-1

TRAMX Maximum transpira-
tion rate

Evapotranspiration cm day-1

ADMI Above-ground dry
matter increase

CropSimulation kg ha-1day-1

RF_FROST Reduction factor frost
kill

FROSTOL
•

Root dynamics

class pcse.crop.root_dynamics.WOFOST_Root_Dynamics(**kwargs)
Root biomass dynamics and rooting depth.

Root growth and root biomass dynamics in WOFOST are separate processes, with the only excep-
tion that root growth stops when no more biomass is sent to the root system.

Root biomass increase results from the assimilates partitioned to the root system. Root death is
defined as the current root biomass multiplied by a relative death rate (RDRRTB). The latter as a
function of the development stage (DVS).

Increase in root depth is a simple linear expansion over time until the maximum rooting depth
(RDM) is reached.

Simulation parameters

82 Chapter 5. Code documentation

PCSE Documentation, Release 5.5

Name Description Type Unit
RDI Initial rooting depth SCr cm
RRI Daily increase in

rooting depth
SCr cm day-1

RDMCR Maximum rooting
depth of the crop

SCR cm

RDMSOL Maximum rooting
depth of the soil

SSo cm

TDWI Initial total crop dry
weight

SCr kg ha-1

IAIRDU Presence of air ducts
in the root (1) or not
(0)

SCr
•

RDRRTB Relative death rate of
roots as a function of
development stage

TCr
•

State variables

Name Description Pbl Unit
RD Current rooting depth Y cm
RDM Maximum attainable rooting depth at the minimum of the soil and crop

maximum rooting depth
N cm

WRT Weight of living roots Y kg
ha-1

DWRT Weight of dead roots N kg
ha-1

TWRT Total weight of roots Y kg
ha-1

Rate variables

Name Description Pbl Unit
RR Growth rate root depth N cm
GRRT Growth rate root biomass N kg ha-1day-1

DRRT Death rate root biomass N kg ha-1day-1

GWRT Net change in root biomass N kg ha-1day-1

Signals send or handled

None

External dependencies:

5.1. Code documentation 83

PCSE Documentation, Release 5.5

Name Description Provided by Unit
DVS Crop development

stage
DVS_Phenology

•

DMI Total dry matter in-
crease

CropSimulation kg ha-1day-1

FR Fraction biomass to
roots

DVS_Partitioning
•

Stem dynamics

class pcse.crop.stem_dynamics.WOFOST_Stem_Dynamics(**kwargs)
Implementation of stem biomass dynamics.

Stem biomass increase results from the assimilates partitioned to the stem system. Stem death is
defined as the current stem biomass multiplied by a relative death rate (RDRSTB). The latter as a
function of the development stage (DVS).

Stems are green elements of the plant canopy and can as such contribute to the total photosynthetic
active area. This is expressed as the Stem Area Index which is obtained by multiplying stem
biomass with the Specific Stem Area (SSATB), which is a function of DVS.

Simulation parameters:

Name Description Type Unit
TDWI Initial total crop dry

weight
SCr kg ha-1

RDRSTB Relative death rate of
stems as a function of
development stage

TCr
•

SSATB Specific Stem Area as
a function of develop-
ment stage

TCr ha kg-1

State variables

Name Description Pbl Unit
SAI Stem Area Index Y

•

WST Weight of living
stems

Y kg ha-1

DWST Weight of dead stems N kg ha-1

TWST Total weight of stems Y kg ha-1

Rate variables

84 Chapter 5. Code documentation

PCSE Documentation, Release 5.5

Name Description Pbl Unit
GRST Growth rate stem biomass N kg ha-1day-1

DRST Death rate stem biomass N kg ha-1day-1

GWST Net change in stem biomass N kg ha-1day-1

Signals send or handled

None

External dependencies:

Name Description Provided by Unit
DVS Crop development

stage
DVS_Phenology

•

ADMI Above-ground dry
matter increase

CropSimulation kg ha-1day-1

FR Fraction biomass to
roots

DVS_Partitioning
•

FS Fraction biomass to
stems

DVS_Partitioning
•

Storage organ dynamics

class pcse.crop.storage_organ_dynamics.WOFOST_Storage_Organ_Dynamics(**kwargs)
Implementation of storage organ dynamics.

Storage organs are the most simple component of the plant in WOFOST and consist of a static pool
of biomass. Growth of the storage organs is the result of assimilate partitioning. Death of storage
organs is not implemented and the corresponding rate variable (DRSO) is always set to zero.

Pods are green elements of the plant canopy and can as such contribute to the total photosynthetic
active area. This is expressed as the Pod Area Index which is obtained by multiplying pod biomass
with a fixed Specific Pod Area (SPA).

Simulation parameters

Name Description Type Unit
TDWI Initial total crop dry weight SCr kg ha-1

SPA Specific Pod Area SCr ha kg-1

State variables

5.1. Code documentation 85

PCSE Documentation, Release 5.5

Name Description Pbl Unit
PAI Pod Area Index Y

•

WSO Weight of living stor-
age organs

Y kg ha-1

DWSO Weight of dead stor-
age organs

N kg ha-1

TWSO Total weight of stor-
age organs

Y kg ha-1

Rate variables

Name Description Pbl Unit
GRSO Growth rate storage organs N kg ha-1day-1

DRSO Death rate storage organs N kg ha-1day-1

GWSO Net change in storage organ biomass N kg ha-1day-1

Signals send or handled

None

External dependencies

Name Description Provided by Unit
ADMI Above-ground dry

matter increase
CropSimulation kg ha-1day-1

FO Fraction biomass to
storage organs

DVS_Partitioning
•

FR Fraction biomass to
roots

DVS_Partitioning
•

N/P/K dynamics

class pcse.crop.npk_dynamics.NPK_Crop_Dynamics(**kwargs)
Implementation of overall NPK crop dynamics.

NPK_Crop_Dynamics implements the overall logic of N/P/K book-keeping within the crop.

Simulation parameters

86 Chapter 5. Code documentation

PCSE Documentation, Release 5.5

Name Description Unit
NMAXLV_TB Maximum N concentration in

leaves as function of dvs
kg N kg-1 dry biomass

PMAXLV_TB As for P kg P kg-1 dry biomass
KMAXLV_TB As for K kg K kg-1 dry biomass
NMAXRT_FR Maximum N concentration in

roots as fraction of maximum
N concentration in leaves

•

PMAXRT_FR As for P
•

KMAXRT_FR As for K
•

NMAXST_FR Maximum N concentration in
stems as fraction of maximum
N concentration in leaves

•

KMAXST_FR As for K
•

PMAXST_FR As for P
•

NRESIDLV Residual N fraction in leaves kg N kg-1 dry biomass
PRESIDLV Residual P fraction in leaves kg P kg-1 dry biomass
KRESIDLV Residual K fraction in leaves kg K kg-1 dry biomass
NRESIDRT Residual N fraction in roots kg N kg-1 dry biomass
PRESIDRT Residual P fraction in roots kg P kg-1 dry biomass
KRESIDRT Residual K fraction in roots kg K kg-1 dry biomass
NRESIDST Residual N fraction in stems kg N kg-1 dry biomass
PRESIDST Residual P fraction in stems kg P kg-1 dry biomass
KRESIDST Residual K fraction in stems kg K kg-1 dry biomass

State variables

5.1. Code documentation 87

PCSE Documentation, Release 5.5

Name Description Unit
NamountLV Actual N amount in living leaves kg N ha-1

PamountLV Actual P amount in living leaves kg P ha-1

KamountLV Actual K amount in living leaves kg K ha-1

NamountST Actual N amount in living stems kg N ha-1

PamountST Actual P amount in living stems kg P ha-1

KamountST Actual K amount in living stems kg K ha-1

NamountSO Actual N amount in living storage organs kg N ha-1

PamountSO Actual P amount in living storage organs kg P ha-1

KamountSO Actual K amount in living storage organs kg K ha-1

NamountRT Actual N amount in living roots kg N ha-1

PamountRT Actual P amount in living roots kg P ha-1

KamountRT Actual K amount in living roots kg K ha-1

Nuptake_T total absorbed N amount kg N ha-1

Puptake_T total absorbed P amount kg P ha-1

Kuptake_T total absorbed K amount kg K ha-1

Nfix_T total biological fixated N amount kg N ha-1

Rate variables

Name Description Unit
RNamountLV Weight increase (N) in leaves kg N ha-1 d-1

RPamountLV Weight increase (P) in leaves kg P ha-1 d-1

RKamountLV Weight increase (K) in leaves kg K ha-1 d-1

RNamountST Weight increase (N) in stems kg N ha-1 d-1

RPamountST Weight increase (P) in stems kg P ha-1 d-1

RKamountST Weight increase (K) in stems kg K ha-1 d-1

RNamountRT Weight increase (N) in roots kg N ha-1 d-1

RPamountRT Weight increase (P) in roots kg P ha-1 d-1

RKamountRT Weight increase (K) in roots kg K ha-1 d-1

RNamountSO Weight increase (N) in storage organs kg N ha-1 d-1

RPamountSO Weight increase (P) in storage organs kg P ha-1 d-1

RKamountSO Weight increase (K) in storage organs kg K ha-1 d-1

RNdeathLV Rate of N loss in leaves kg N ha-1 d-1

RPdeathLV as for P kg P ha-1 d-1

RKdeathLV as for K kg K ha-1 d-1

RNdeathST Rate of N loss in roots kg N ha-1 d-1

RPdeathST as for P kg P ha-1 d-1

RKdeathST as for K kg K ha-1 d-1

RNdeathRT Rate of N loss in stems kg N ha-1 d-1

RPdeathRT as for P kg P ha-1 d-1

RKdeathRT as for K kg K ha-1 d-1

RNloss N loss due to senescence kg N ha-1 d-1

RPloss P loss due to senescence kg P ha-1 d-1

RKloss K loss due to senescence kg K ha-1 d-1

Signals send or handled

None

88 Chapter 5. Code documentation

PCSE Documentation, Release 5.5

External dependencies

Name Description Provided by Unit
DVS Crop development

stage
DVS_Phenology

•

WLV Dry weight of living
leaves

WOFOST_Leaf_Dynamicskg ha-1

WRT Dry weight of living
roots

WOFOST_Root_Dynamicskg ha-1

WST Dry weight of living
stems

WOFOST_Stem_Dynamicskg ha-1

DRLV Death rate of leaves WOFOST_Leaf_Dynamicskg ha-1day-1

DRRT Death rate of roots WOFOST_Root_Dynamicskg ha-1day-1

DRST Death rate of stems WOFOST_Stem_Dynamicskg ha-1day-1

class pcse.crop.nutrients.NPK_Demand_Uptake(**kwargs)
Calculates the crop N/P/K demand and its uptake from the soil.

Crop N/P/K demand is calculated as the difference between the actual N/P/K concentration (kg
N/P/K per kg biomass) in the vegetative plant organs (leaves, stems and roots) and the maximum
N/P/K concentration for each organ. N/P/K uptake is then estimated as the minimum of supply
from the soil and demand from the crop.

Nitrogen fixation (leguminous plants) is calculated by assuming that a fixed fraction of the daily
N demand is supplied by nitrogen fixation. The remaining part has to be supplied by the soil.

The N/P/K demand of the storage organs is calculated in a somewhat different way because it is
assumed that the demand from the storage organs is fulfilled by translocation of N/P/K from the
leaves, stems and roots. So Therefore the uptake of the storage organs is calculated as the minimum
of the translocatable N/P/K (supply) and the demand from the storage organs. Moreover, there is
time coefficient for translocation which takes into account that there is a delay in the availability
of translocatable N/P/K

Simulation parameters

5.1. Code documentation 89

PCSE Documentation, Release 5.5

Name Description Unit
NMAXLV_TB Maximum N concentration in

leaves as function of DVS
kg N kg-1 dry biomass

PMAXLV_TB As for P kg P kg-1 dry biomass
KMAXLV_TB As for K kg K kg-1 dry biomass
NMAXRT_FR Maximum N concentration in

roots as fraction of maximum
N concentration in leaves

•

PMAXRT_FR As for P
•

KMAXRT_FR As for K
•

NMAXST_FR Maximum N concentration in
stems as fraction of maximum
N concentration in leaves

•

PMAXST_FR As for P
•

KMAXST_FR As for K
•

NMAXSO Maximum N concentration in
storage organs

kg N kg-1 dry biomass

PMAXSO As for P kg P kg-1 dry biomass
KMAXSO As for K kg K kg-1 dry biomass
NCRIT_FR Critical N concentration as

fraction of maximum N con-
centration for vegetative plant
organs as a whole (leaves +
stems)

•

PCRIT_FR As for P
•

KCRIT_FR As for K
•

TCNT Time coefficient for N transla-
tion to storage organs

days

TCPT As for P days
TCKT As for K days
NFIX_FR fraction of crop nitrogen up-

take by biological fixation
kg N kg-1 dry biomass

RNUPTAKEMAX Maximum rate of N uptake kg N ha-1 d-1

RPUPTAKEMAX Maximum rate of P uptake kg N ha-1 d-1

RKUPTAKEMAX Maximum rate of K uptake kg N ha-1 d-1

State variables

Rate variables

90 Chapter 5. Code documentation

PCSE Documentation, Release 5.5

Name Description Pbl Unit
RNuptakeLV Rate of N uptake in leaves Y kg N ha-1 d-1

RNuptakeST Rate of N uptake in stems Y kg N ha-1 d-1

RNuptakeRT Rate of N uptake in roots Y kg N ha-1 d-1

RNuptakeSO Rate of N uptake in storage organs Y kg N ha-1 d-1

RPuptakeLV Rate of P uptake in leaves Y kg P ha-1 d-1

RPuptakeST Rate of P uptake in stems Y kg P ha-1 d-1

RPuptakeRT Rate of P uptake in roots Y kg P ha-1 d-1

RPuptakeSO Rate of P uptake in storage organs Y kg P ha-1 d-1

RKuptakeLV Rate of K uptake in leaves Y kg K ha-1 d-1

RKuptakeST Rate of K uptake in stems Y kg K ha-1 d-1

RKuptakeRT Rate of K uptake in roots Y kg K ha-1 d-1

RKuptakeSO Rate of K uptake in storage organs Y kg K ha-1 d-1

RNuptake Total rate of N uptake Y kg N ha-1 d-1

RPuptake Total rate of P uptake Y kg P ha-1 d-1

RKuptake Total rate of K uptake Y kg K ha-1 d-1

RNfixation Rate of N fixation Y kg N ha-1 d-1

NdemandLV N Demand in living leaves N kg N ha-1

NdemandST N Demand in living stems N kg N ha-1

NdemandRT N Demand in living roots N kg N ha-1

NdemandSO N Demand in storage organs N kg N ha-1

PdemandLV P Demand in living leaves N kg P ha-1

PdemandST P Demand in living stems N kg P ha-1

PdemandRT P Demand in living roots N kg P ha-1

PdemandSO P Demand in storage organs N kg P ha-1

KdemandLV K Demand in living leaves N kg K ha-1

KdemandST K Demand in living stems N kg K ha-1

KdemandRT K Demand in living roots N kg K ha-1

KdemandSO K Demand in storage organs N kg K ha-1

Ndemand Total crop N demand N kg N ha-1 d-1

Pdemand Total crop P demand N kg P ha-1 d-1

Kdemand Total crop K demand N kg K ha-1 d-1

Signals send or handled

None

External dependencies

5.1. Code documentation 91

PCSE Documentation, Release 5.5

Name Description Provided by Unit
DVS Crop development

stage
DVS_Phenology

•

TRA Crop transpiration Evapotranspiration |cm d-1|
TRAMX Potential crop tran-

spiration
Evapotranspiration |cm d-1|

NAVAIL Total available N
from soil

NPK_Soil_Dynamics kg ha-1

PAVAIL Total available P
from soil

NPK_Soil_Dynamics kg ha-1

KAVAIL Total available K
from soil

NPK_Soil_Dynamics kg ha-1

Ntranslocatable Translocatable
amount of N from
stems, Leaves and
roots

NPK_Translocation kg ha-1

Ptranslocatable As for P NPK_Translocation kg ha-1

Ktranslocatable As for K NPK_Translocation kg ha-1

class pcse.crop.nutrients.NPK_Stress(**kwargs)
Implementation of NPK stress calculation through [NPK]nutrition index.

Stress factors are calculated based on the mass concentrations of N/P/K in the leaf and stem biomass
of the plant. For each pool of nutrients, four concentrations are calculated based on the biomass
for leaves and stems: - the actual concentration based on the actual amount of nutrients

divided by the actual leaf and stem biomass.

• The maximum concentration, being the maximum that the plant can absorb into its leaves
and stems.

• The critical concentration, being the concentration that is needed to maintain growth rates
that are not limited by N/P/K. For P and K, the critical concentration is usually equal to the
maximum concentration. For N, the critical concentration can be lower than the maximum
concentration. This concentration is sometimes called ‘optimal concentration’.

• The residual concentration which is the amount that is locked into the plant structural biomass
and cannot be mobilized anymore.

The stress index (SI) is determined as a simple ratio between those concentrations according to:

𝑆𝐼 = (𝐶𝑎 − 𝐶𝑟)/(𝐶𝑐 − 𝐶𝑟)

with subscript a, r and c being the actual, residual and critical concentration for the nutrient. This
equation is applied in analogue to N, P and K and results in the nitrogen nutrition index (NNI),
phosphorous nutrition index (PNI) and Potassium nutrition index (KNI). Next, the NPK index
(NPKI) is calculated as the minimum of NNI, PNI, KNI. Finally, the reduction factor for assimi-
lation (NPKREF) is calculated using the reduction factor for light use efficiency (NLUE_NPK).

Simulation parameters

92 Chapter 5. Code documentation

PCSE Documentation, Release 5.5

Name Description Unit
NMAXLV_TB Maximum N concentration in

leaves as function of DVS
kg N kg-1 dry biomass

PMAXLV_TB As for P kg P kg-1 dry biomass
KMAXLV_TB As for K kg K kg-1 dry biomass
NMAXRT_FR Maximum N concentration in

roots as fraction of maximum
N concentration in leaves

•

PMAXRT_FR As for P
•

KMAXRT_FR As for K
•

NMAXST_FR Maximum N concentration in
stems as fraction of maximum
N concentration in leaves

•

PMAXST_FR As for P
•

KMAXST_FR As for K
•

NCRIT_FR Critical N concentration as
fraction of maximum N con-
centration for vegetative plant
organs as a whole (leaves +
stems)

•

PCRIT_FR As for P
•

KCRIT_FR As for K
•

NRESIDLV Residual N fraction in leaves kg N kg-1 dry biomass
PRESIDLV Residual P fraction in leaves kg P kg-1 dry biomass
KRESIDLV Residual K fraction in leaves kg K kg-1 dry biomass
NRESIDST Residual N fraction in stems kg N kg-1 dry biomass
PRESIDST Residual P fraction in stems kg P kg-1 dry biomass
KRESIDST Residual K fraction in stems kg K kg-1 dry biomass
NLUE_NPK Coefficient for the reduction

of RUE due to nutrient (N-P-
K) stress

•

Rate variables

The rate variables here are not real rate variables in the sense that they are derived state variables
and do not represent a rate. However, as they are directly used in the rate variable calculation it is
logical to put them here.

5.1. Code documentation 93

PCSE Documentation, Release 5.5

Name Description Pbl Unit
NNI Nitrogen nutrition in-

dex
Y

•

PNI Nitrogen nutrition in-
dex

N
•

KNI Nitrogen nutrition in-
dex

N
•

NPKI Minimum of NNI,
PNI, KNI

Y
•

RFNPK Reduction factor
for CO2 assimlation
based on NPKI
and the parameter
NLUE_NPK

N
•

External dependencies:

Name Description Provided by Unit
DVS Crop development

stage
DVS_Phenology

•

WST Dry weight of living
stems

WOFOST_Stem_Dynamicskg ha-1

WLV Dry weight of living
leaves

WOFOST_Leaf_Dynamicskg ha-1

NamountLV Amount of N in
leaves

NPK_Crop_Dynamics kg ha-1

NamountST Amount of N in stems NPK_Crop_Dynamics kg ha-1

PamountLV Amount of P in leaves NPK_Crop_Dynamics kg ha-1

PamountST Amount of P in stems NPK_Crop_Dynamics kg ha-1

KamountLV Amount of K in
leaves

NPK_Crop_Dynamics kg ha-1

KamountST Amount of K in stems NPK_Crop_Dynamics kg ha-1

class pcse.crop.nutrients.NPK_Translocation(**kwargs)
Does the bookkeeping for translocation of N/P/K from the roots, leaves and stems towards the
storage organs of the crop.

First the routine calculates the state of the translocatable amount of N/P/K. This translocatable
amount is defined as the amount of N/P/K above the residual N/P/K amount calculated as the
residual concentration times the living biomass. The residual amount is locked into the plant
structural biomass and cannot be mobilized anymore. The translocatable amount is calculated
for stems, roots and leaves and published as the state variables Ntranslocatable, Ptranslocatable
and Ktranslocatable.

The overal translocation rate is calculated as the minimum of supply (the translocatable amount)
and demand from the storage organs as calculated in the component on Demand_Uptake. The

94 Chapter 5. Code documentation

PCSE Documentation, Release 5.5

actual rate of N/P/K translocation from the different plant organs is calculated assuming that the
uptake rate is distributed over roots, stems and leaves in proportion to the translocatable amount
for each organ.

Simulation parameters

Name Description Unit
NRESIDLV Residual N fraction in leaves kg N kg-1 dry biomass
PRESIDLV Residual P fraction in leaves kg P kg-1 dry biomass
KRESIDLV Residual K fraction in leaves kg K kg-1 dry biomass
NRESIDST Residual N fraction in stems kg N kg-1 dry biomass
PRESIDST Residual P fraction in stems kg P kg-1 dry biomass
KRESIDST Residual K fraction in stems kg K kg-1 dry biomass
NPK_TRANSLRT_FR NPK translocation from roots

as a fraction of resp. to-
tal NPK amounts translocated
from leaves and stems

•

State variables

Name Description Pbl Unit
Ntranslocat-
ableLV

Translocatable N amount in living leaves N kg N ha-1

Ptranslocat-
ableLV

Translocatable P amount in living leaves N kg P ha-1

Ktranslocat-
ableLV

Translocatable K amount in living leaves N kg K ha-1

Ntranslocata-
bleST

Translocatable N amount in living stems N kg N ha-1

Ptranslocata-
bleST

Translocatable P amount in living stems N kg P ha-1

Ktranslocata-
bleST

Translocatable K amount in living stems N kg K ha-1

Ntranslocat-
ableRT

Translocatable N amount in living roots N kg N ha-1

Ptranslocat-
ableRT

Translocatable P amount in living roots N kg P ha-1

Ktranslocat-
ableRT

Translocatable K amount in living roots N kg K ha-1

Ntranslocatable Total N amount that can be translocated to the storage
organs

Y [kg N ha-
1]

Ptranslocatable Total P amount that can be translocated to the storage
organs

Y [kg P ha-
1]

Ktranslocatable Total K amount that can be translocated to the storage
organs

Y [kg K ha-
1]

Rate variables

5.1. Code documentation 95

PCSE Documentation, Release 5.5

Name Description Pbl Unit
RNtranslocationLV Weight increase (N) in leaves Y kg ha-1day-1

RPtranslocationLV Weight increase (P) in leaves Y kg ha-1day-1

RKtranslocationLV Weight increase (K) in leaves Y kg ha-1day-1

RNtranslocationST Weight increase (N) in stems Y kg ha-1day-1

RPtranslocationST Weight increase (P) in stems Y kg ha-1day-1

RKtranslocationST Weight increase (K) in stems Y kg ha-1day-1

RNtranslocationRT Weight increase (N) in roots Y kg ha-1day-1

RPtranslocationRT Weight increase (P) in roots Y kg ha-1day-1

RKtranslocationRT Weight increase (K) in roots Y kg ha-1day-1

Signals send or handled

None

External dependencies:

Name Description Provided by Unit
DVS Crop development

stage
DVS_Phenology

•

WST Dry weight of living
stems

WOFOST_Stem_Dynamicskg ha-1

WLV Dry weight of living
leaves

WOFOST_Leaf_Dynamicskg ha-1

WRT Dry weight of living
roots

WOFOST_Root_Dynamicskg ha-1

NamountLV Amount of N in
leaves

NPK_Crop_Dynamics kg ha-1

NamountST Amount of N in stems NPK_Crop_Dynamics kg ha-1

NamountRT Amount of N in roots NPK_Crop_Dynamics kg ha-1

PamountLV Amount of P in leaves NPK_Crop_Dynamics kg ha-1

PamountST Amount of P in stems NPK_Crop_Dynamics kg ha-1

PamountRT Amount of P in roots NPK_Crop_Dynamics kg ha-1

KamountLV Amount of K in
leaves

NPK_Crop_Dynamics kg ha-1

KamountST Amount of K in stems NPK_Crop_Dynamics kg ha-1

KamountRT Amount of K in roots NPK_Crop_Dynamics kg ha-1

Abiotic damage

class pcse.crop.abioticdamage.FROSTOL(**kwargs)
Implementation of the FROSTOL model for frost damage in winter-wheat.

Parameters

• day – start date of the simulation

• kiosk – variable kiosk of this PCSE instance

• parvalues – ParameterProvider object providing parameters as key/value
pairs

96 Chapter 5. Code documentation

PCSE Documentation, Release 5.5

Simulation parameters

Name Description Type Unit
IDSL Switch for pheno-

logical development
options temperature
only (IDSL=0),
including daylength
(IDSL=1) and
including vernal-
ization (IDSL>=2).
FROSTOL requires
IDSL>=2

SCr
•

LT50C Critical LT50 defined
as the lowest LT50
value that the wheat
cultivar can obtain

SCr ∘𝐶

FROSTOL_H Hardening coefficient SCr ∘𝐶−1𝑑𝑎𝑦−1

FROSTOL_D Dehardening coeffi-
cient

SCr ∘𝐶−3𝑑𝑎𝑦−1

FROSTOL_S Low temperature
stress coefficient

SCr ∘𝐶−1𝑑𝑎𝑦−1

FROSTOL_R Respiration stress co-
efficient

SCr day-1

FROS-
TOL_SDBASE

Minimum snow
depth for respiration
stress

SCr cm

FROSTOL_SDMAX Snow depth with
maximum respira-
tion stress. Larger
snow depth does
not increase stress
anymore.

SCr cm

FROSTOL_KILLCF Steepness coefficient
for logistic kill func-
tion.

SCr
•

ISNOWSRC Use prescribed snow
depth from driving
variables (0) or
modelled snow depth
through the kiosk (1)

SSi
•

State variables

5.1. Code documentation 97

PCSE Documentation, Release 5.5

Name Description Pbl Unit
LT50T Current LT50 value N ∘𝐶

LT50I Initial LT50 value of
unhardened crop

N ∘𝐶

IDFST Total number of days
with frost stress

N
•

Rate variables

Name Description Pbl Unit
RH Rate of hardening N ∘𝐶𝑑𝑎𝑦−1

RDH_TEMP Rate of dehardening
due to temperature

N ∘𝐶𝑑𝑎𝑦−1

RDH_RESP Rate of dehardening
due to respiration
stress

N ∘𝐶𝑑𝑎𝑦−1

RDH_TSTR Rate of dehardening
due to temperature
stress

N ∘𝐶𝑑𝑎𝑦−1

IDFS Frost stress, yes (1)
or no (0). Frost
stress is defined as:
RF_FROST > 0

N
•

RF_FROST Reduction factor on
leave biomass as
a function of min.
crown temperature
and LT50T: ranges
from 0 (no damage)
to 1 (complete kill).

Y
•

RF_FROST_T Total frost kill
through the growing
season is computed
as the multiplication
of the daily frost kill
events, 0 means no
damage, 1 means
total frost kill.

N
•

External dependencies:

98 Chapter 5. Code documentation

PCSE Documentation, Release 5.5

Name Description Provided by Unit
TEMP_CROWN Daily average crown

temperature derived
from calling the
crown_temperature
module.

CrownTemperature ∘𝐶

TMIN_CROWN Daily minimum
crown temper-
ature derived
from calling the
crown_temperature
module.

CrownTemperature ∘𝐶

ISVERNALISED Boolean reflecting
the vernalisation
state of the crop.

Vernalisation
i.c.m. with
DVS_Phenology
module

•

Reference: Anne Kari Bergjord, Helge Bonesmo, Arne Oddvar Skjelvag, 2008.
Modelling the course of frost tolerance in winter wheat: I. Model development, European
Journal of Agronomy, Volume 28, Issue 3, April 2008, Pages 321-330.

http://dx.doi.org/10.1016/j.eja.2007.10.002

class pcse.crop.abioticdamage.CrownTemperature(**kwargs)
Implementation of a simple algorithm for estimating the crown temperature (2cm under the soil
surface) under snow.

Is is based on a simple empirical equation which estimates the daily minimum, maximum and
mean crown temperature as a function of daily min or max temperature and the relative snow
depth (RSD):

𝑅𝑆𝐷 = 𝑚𝑖𝑛(15, 𝑆𝐷)/15

and

𝑇 𝑐𝑟𝑜𝑤𝑛
𝑚𝑖𝑛 = 𝑇𝑚𝑖𝑛 * (𝐴+𝐵(1−𝑅𝑆𝐷)2)

and

𝑇 𝑐𝑟𝑜𝑤𝑛
𝑚𝑎𝑥 = 𝑇𝑚𝑎𝑥 * (𝐴+𝐵(1−𝑅𝑆𝐷)2)

and

𝑇 𝑐𝑟𝑜𝑤𝑛
𝑎𝑣𝑔 = (𝑇 𝑐𝑟𝑜𝑤𝑛

𝑚𝑎𝑥 + 𝑇 𝑐𝑟𝑜𝑤𝑛
𝑚𝑖𝑛)/2

At zero snow depth crown temperature is estimated close the the air temperature. Increasing snow
depth acts as a buffer damping the effect of low air temperature on the crown temperature. The
maximum value of the snow depth is limited on 15cm. Typical values for A and B are 0.2 and 0.5

Note that the crown temperature is only estimated if drv.TMIN<0, otherwise the TMIN, TMAX
and daily average temperature (TEMP) are returned.

Parameters

• day – day when model is initialized

• kiosk – VariableKiosk of this instance

5.1. Code documentation 99

http://dx.doi.org/10.1016/j.eja.2007.10.002

PCSE Documentation, Release 5.5

• parvalues – ParameterProvider object providing parameters as key/value
pairs

Returns
a tuple containing minimum, maximum and daily average crown temperature.

Simulation parameters

Name Description Type Unit
ISNOWSRC Use prescribed snow

depth from driving
variables (0) or
modelled snow depth
through the kiosk (1)

SSi
•

CROWNTMPA A parameter in equa-
tion for crown tem-
perature

SSi
•

CROWNTMPB B parameter in equa-
tion for crown tem-
perature

SSi
•

Rate variables

Name Description Pbl Unit
TEMP_CROWN Daily average crown temperature N ∘𝐶

TMIN_CROWN Daily minimum crown temperature N ∘𝐶

TMAX_CROWN Daily maximum crown temperature N ∘𝐶

Note that the calculated crown temperatures are not real rate variables as they do not pertain to rate
of change. In fact they are a derived driving variable. Nevertheless for calculating the frost damage
they should become available during the rate calculation step and by treating them as rate variables,
they can be found by a get_variable() call and thus be defined in the list of OUTPUT_VARS in the
configuration file

External dependencies:

Name Description Provided by Unit
SNOWDEPTHDepth of

snow cover.
Prescibed by driving variables or simulated by snow cover
module and taken from kiosk

𝑐𝑚

5.1.7 Crop simulation processes for LINGRA & LINGRA-N

Implementation of the LINGRA grassland simulation model

This module provides an implementation of the LINGRA (LINtul GRAssland) simulation model for
grasslands as described by Schapendonk et al. 1998 (https://doi.org/10.1016/S1161-0301(98)00027-6)
for use within the Python Crop Simulation Environment.

100 Chapter 5. Code documentation

https://doi.org/10.1016/S1161-0301(98)00027-6

PCSE Documentation, Release 5.5

Overall grassland model

class pcse.crop.lingra.LINGRA(**kwargs)
Top level implementation of LINGRA, integrating all components

This class integrates all components from the LINGRA model and includes the main state vari-
ables related to weights of the different biomass pools, the leaf area, tiller number and leaf length.
The integrated components include the implementations for source/sink limited growth, soil tem-
perature, evapotranspiration and root dynamics. The latter two are taken from WOFOST in order
to avoid duplication of code.

Compared to the original code from Schapendonk et al. (1998) several improvements have been
made:

• an overall restructuring of the code, removing unneeded variables and renaming the remain-
ing variables to have more readable names.

• A clearer implementation of sink/source limited growth including the use of reserves

• the potential leaf elongation rate as calculated by the Sink-limited growth module is now
corrected for actual growth. Thereby avoiding unlimited leaf growth under water-stressed
conditions which led to unrealistic results.

Simulation parameters:

Name Description Unit
LAIinit Initial leaf area index

•

TillerNumberinit Initial number of tillers tillers/m2
WeightREinit Initial weight of reserves kg/ha
WeightRTinit Initial weight of roots kg/ha
LAIcrit Critical LAI for death due to

self-shading •

RDRbase Background relative death
rate for roots

d-1

RDRShading Max relative death rate of
leaves due to self-shading

d-1

RDRdrought Max relative death rate of
leaves due to drought stress

d-1

SLA Specific leaf area ha/kg
TempBase Base temperature for photo-

synthesis and development
C

PartitioningRootsTB Partitioning fraction to roots
as a function of the reduction
factor for transpiration (RF-
TRA)

-, -

TSUMmax Temperature sum to max de-
velopment stage

C.d

Rate variables

5.1. Code documentation 101

PCSE Documentation, Release 5.5

Name Description Unit
dTSUM Change in temperature sum

for development
C

dLAI Net change in Leaf Area In-
dex

d-1

dDaysAfterHarvest Change in Days after Harvest
•

dCuttingNumber Change in number of cuttings
(harvests) •

dWeightLV Net change in leaf weight kg/ha/d
dWeightRE Net change in reserve pool kg/ha/d
dLeafLengthAct Change in actual leaf length cm/d
LVdeath Leaf death rate kg/ha/d
LVgrowth Leaf growth rate kg/ha/d
dWeightHARV Change in harvested dry mat-

ter
kg/ha/d

dWeightRT Net change in root weight kg/ha/d
LVfraction Fraction partitioned to leaves

•

RTfraction Fraction partitioned to roots
•

State variables

102 Chapter 5. Code documentation

PCSE Documentation, Release 5.5

Name Description Unit
TSUM Temperature sum C d
LAI Leaf area Index

•

DaysAfterHarvest number of days after harvest d
CuttingNumber number of cuttings (harvests)

•

TillerNumber Tiller number tillers/m2
WeightLVgreen Weight of green leaves kg/ha
WeightLVdead Weight of dead leaves kg/ha
WeightHARV Weight of harvested dry mat-

ter
kg/ha

WeightRE Weight of reserves kg/ha
WeightRT Weight of roots kg/ha
LeafLength Length of leaves kg/ha
WeightABG Total aboveground weight

(harvested + current)
kg/ha

SLAINT Integrated SLA during the
season

ha/kg

DVS Development stage
•

Signals sent or handled

Mowing of grass will take place when a pcse.signals.mowing event is broadcasted. This will reduce
the amount of living leaf weight assuming that a certain amount of biomass will remain on the field
(this is a parameter on the MOWING event).

External dependencies:

Name Description Provided by
RFTRA Reduction factor for transpiration pcse.crop.Evapotranspiration
dLeafLengthPot Potential growth in leaf length pcse.crop.lingra.SinkLimitedGrowth
dTillerNumber Change in tiller number pcse.crop.lingra.SinkLimitedGrowth

Source/Sink limited growth

class pcse.crop.lingra.SourceLimitedGrowth(**kwargs)
Calculates the source-limited growth rate for grassland based on radiation and temperature as driv-
ing variables and possibly limited by soil moisture or leaf nitrogen content.The latter is based on
static values for current and maximum N concentrations and is mainly there for connecting an N
module in the future.

This routine uses a light use efficiency (LUE) approach where the LUE is adjusted for effects of
temperature and radiation level. The former is need as photosynthesis has a clear temperature
response. The latter is required as photosynthesis rate flattens off at higher radiation levels which
leads to a lower ‘apparent’ light use efficiency. The parameter LUEreductionRadiationTB is a
crude empirical correction for this effect.

5.1. Code documentation 103

PCSE Documentation, Release 5.5

Note that a reduction in growth rate due to soil moisture is obtained through the reduction factor
for transpiration (RFTRA).

This module does not provide any true rate variables, but returns the computed growth rate directly
to the calling routine through __call__().

Simulation parameters:

Name Description Unit
KDIFTB Extinction coefficient for dif-

fuse visible as function of
DVS.

•

CO2A Atmospheric CO2 concentra-
tion

ppm

LUEreductionSoilTempTB Reduction function for light
use efficiency as a function of
soil temperature.

C, -

LUEreductionRadiationTB Reduction function for light
use efficiency as a function of
radiation level.

MJ, -

LUEmax Maximum light use effi-
ciency.

Rate variables

Name Description Unit
RF_RadiationLevel Reduction factor for light use

efficiency due to the radiation
level

•

RF_RadiationLevel Reduction factor for light use
efficiency due to the radiation
level

•

LUEact The actual light use efficiency g /(MJ PAR)

Signals send or handled

None

External dependencies:

Name Description Provided by
DVS Crop development stage pylingra.LINGRA
TemperatureSoil Soil Temperature pylingra.SoilTemperature
RFTRA Reduction factor for transpiration pcse.crop.Evapotranspiration

class pcse.crop.lingra.SinkLimitedGrowth(**kwargs)
Calculates the sink-limited growth rate for grassland assuming a temperature driven maximum leaf
elongation rate multiplied by the number of tillers. The conversion to growth in kg/ha dry matter
is done by dividing by the specific leaf area (SLA).

Besides the sink-limited growth rate, this class also computes the change in tiller number taking
into account the growth rate, death rate and number of days after defoliation due to harvest.

104 Chapter 5. Code documentation

PCSE Documentation, Release 5.5

Simulation parameters:

Name Description Unit
TempBase Base temperature for leaf de-

velopment and grass phenol-
ogy

C

LAICrit Cricical leaf area beyond
which leaf death due to
self-shading occurs

•

SiteFillingMax Maximum site filling for new
buds

tiller/leaf-1

SLA Specific leaf area ha/kg
TSUMmax Temperature sum to max de-

velopment stage
C.d

TillerFormRateA0 A parameter in the equation
for tiller formation rate valid
up till 7 days after harvest

TillerFormRateB0 B parameter in the equation
for tiller formation rate valid
up till 7 days after harvest

TillerFormRateA8 A parameter in the equation
for tiller formation rate start-
ing from 8 days after harvest

TillerFormRateB8 B parameter in the equation
for tiller formation rate start-
ing from 8 days after harvest

Rate variables

Name Description Unit
dTiller-
Number

Change in tiller number due to the radiation level tillers/m2/d

dLeafLength-
Pot

Potential change in leaf length. Later on the actual change in leaf length
will be computed taking source limitation into account.

cm/d

LAIGrowthSinkGrowth of LAI based on sink-limited growth rate. d-1

Signals send or handled

None

External dependencies:

5.1. Code documentation 105

PCSE Documentation, Release 5.5

Name Description Provided by
DVS Crop development stage pylingra.LINGRA
LAI Leaf Area Index pylingra.LINGRA
Tempera-
tureSoil

Soil Temperature pylin-
gra.SoilTemperature

RF_TemperatureReduction factor for LUE based on temperature pylin-
gra.SourceLimitedGrowth

TillerNum-
ber

Actual number of tillers pylingra.LINGRA

LVfraction Fraction of assimilates going to leaves pylingra.LINGRA
dWeightHARVChange in harvested weight (indicates that a harvest

took place today)
pylingra.LINGRA

Nitrogen dynamics

class pcse.crop.lingra_ndynamics.N_Demand_Uptake(**kwargs)
Calculates the crop N demand and its uptake from the soil.

Crop N demand is calculated as the difference between the actual N concentration (kg N per kg
biomass) in the vegetative plant organs (leaves, stems and roots) and the maximum N concentration
for each organ. N uptake is then estimated as the minimum of supply from the soil and demand
from the crop.

Simulation parameters

Rate variables

Name Description Pbl Unit
RNup-
takeLV

Rate of N uptake in leaves Y kg N ha-1

d-1

RNup-
takeRT

Rate of N uptake in roots Y kg N ha-1

d-1

RNup-
take

Total rate of N uptake Y kg N ha-1

d-1

Ndeman-
dLV

Ndemand of leaves based on current growth rate and deficienties
from previous time steps

N kg N ha-1

Ndeman-
dRT

N demand of roots, idem as leaves N kg N ha-1

Nde-
mand

Total N demand (leaves + roots) N kg N ha-1

Signals send or handled

None

External dependencies

106 Chapter 5. Code documentation

PCSE Documentation, Release 5.5

Name Description Provided by Unit
DVS Crop development

stage
DVS_Phenology

•

NAVAIL Total available N
from soil

NPK_Soil_Dynamics kg ha-1

class pcse.crop.lingra_ndynamics.N_Stress(**kwargs)
Implementation of N stress calculation through nitrogen nutrition index.

Stress factors are calculated based on the mass concentrations of N in the vegetative biomass of
the plant. For each pool of nutrients, four concentrations are calculated based on the biomass for
leaves and stems: - the actual concentration based on the actual amount of nutrients

divided by the vegetative biomass.

• The maximum concentration, being the maximum that the plant can absorb into its leaves
and stems.

• The critical concentration, being the concentration that is needed to maintain growth rates
that are not limited by N (regulated by NCRIT_FR). For N, the critical concentration can
be lower than the maximum concentration. This concentration is sometimes called ‘optimal
concentration’.

• The residual concentration which is the amount that is locked into the plant structural biomass
and cannot be mobilized anymore.

The stress index (SI) is determined as a simple ratio between those concentrations according to:

𝑆𝐼 = (𝐶𝑎)−𝐶𝑟)/(𝐶𝑐−𝐶𝑟)

with subscript a, r and c being the actual, residual and critical concentration for the nutrient.
This results in the nitrogen nutrition index (NNI). Finally, the reduction factor for assimilation
(RFNUTR) is calculated using the reduction factor for light use efficiency (NLUE).

Simulation parameters

Rate variables

The rate variables here are not real rate variables in the sense that they are derived state variables
and do not represent a rate. However, as they are directly used in the rate variable calculation it is
logical to put them here.

Name Description Pbl Unit
NNI Nitrogen nutrition in-

dex
Y

•

RFNUTR Reduction factor for
light use efficiency

Y
•

External dependencies:

5.1. Code documentation 107

PCSE Documentation, Release 5.5

Name Description Provided by Unit
DVS Crop development

stage
DVS_Phenology

•

WST Dry weight of living
stems

WOFOST_Stem_Dynamicskg ha-1

WeightLVgreen Dry weight of living
leaves

WOFOST_Leaf_Dynamicskg ha-1

NamountLV Amount of N in
leaves

N_Crop_Dynamics kg ha-1

class pcse.crop.lingra_ndynamics.N_Crop_Dynamics(**kwargs)
Implementation of overall N crop dynamics.

NPK_Crop_Dynamics implements the overall logic of N book-keeping within the crop.

Simulation parameters

State variables

Name Description Pbl Unit
NamountLV Actual N amount in living leaves Y kg N ha-1

NamountRT Actual N amount in living roots Y kg N ha-1

Nuptake_T total absorbed N amount N kg N ha-1

Nlosses_T Total N amount lost due to senescence N kg N ha-1

Rate variables

Name Description Pbl Unit
RNamountLV Weight increase (N) in leaves N kg ha-1day-1

RNamountRT Weight increase (N) in roots N kg ha-1day-1

RNdeathLV Rate of N loss in leaves N kg ha-1day-1

RNdeathRT Rate of N loss in roots N kg ha-1day-1

RNloss N loss due to senescence N kg ha-1day-1

Signals send or handled

None

External dependencies

5.1.8 Base classes

The base classes define much of the functionality which is used “under the hood” in PCSE. Except for
the VariableKiosk and the WeatherDataContainer all classes are not to be called directly but should be
subclassed instead.

108 Chapter 5. Code documentation

PCSE Documentation, Release 5.5

VariableKiosk

class pcse.base.VariableKiosk

VariableKiosk for registering and publishing state variables in PCSE.

No parameters are needed for instantiating the VariableKiosk. All variables that are defined within
PCSE will be registered within the VariableKiosk, while usually only a small subset of those will
be published with the kiosk. The value of the published variables can be retrieved with the bracket
notation as the variableKiosk is essentially a (somewhat fancy) dictionary.

Registering/deregistering rate and state variables goes through the self.register_variable() and
self.deregister_variable() methods while the set_variable() method is used to update a value of
a published variable. In general, none of these methods need to be called by users directly as the
logic within the StatesTemplate and RatesTemplate takes care of this.

Finally, the variable_exists() can be used to check if a variable is registered, while the flush_states()
and flush_rates() are used to remove (flush) the values of any published state and rate variables.

example:

>>> import pcse
>>> from pcse.base import VariableKiosk
>>>
>>> v = VariableKiosk()
>>> id0 = 0
>>> v.register_variable(id0, "VAR1", type="S", publish=True)
>>> v.register_variable(id0, "VAR2", type="S", publish=False)
>>>
>>> id1 = 1
>>> v.register_variable(id1, "VAR3", type="R", publish=True)
>>> v.register_variable(id1, "VAR4", type="R", publish=False)
>>>
>>> v.set_variable(id0, "VAR1", 1.35)
>>> v.set_variable(id1, "VAR3", 310.56)
>>>
>>> print v
Contents of VariableKiosk:
* Registered state variables: 2
* Published state variables: 1 with values:
- variable VAR1, value: 1.35
* Registered rate variables: 2
* Published rate variables: 1 with values:
- variable VAR3, value: 310.56

>>> print v["VAR3"]
310.56
>>> v.set_variable(id0, "VAR3", 750.12)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "pcse/base.py", line 148, in set_variable
raise exc.VariableKioskError(msg % varname)

pcse.exceptions.VariableKioskError: Unregistered object tried to set the␣
→˓value of variable 'VAR3': access denied.

(continues on next page)

5.1. Code documentation 109

PCSE Documentation, Release 5.5

(continued from previous page)

>>>
>>> v.flush_rates()
>>> print v
Contents of VariableKiosk:
* Registered state variables: 2
* Published state variables: 1 with values:
- variable VAR1, value: 1.35
* Registered rate variables: 2
* Published rate variables: 1 with values:
- variable VAR3, value: undefined

>>> v.flush_states()
>>> print v
Contents of VariableKiosk:
* Registered state variables: 2
* Published state variables: 1 with values:
- variable VAR1, value: undefined
* Registered rate variables: 2
* Published rate variables: 1 with values:
- variable VAR3, value: undefined

deregister_variable(oid, varname)
Object with id(object) asks to deregister varname from kiosk

Parameters

• oid – Object id (from python builtin id() function) of the state/rate object
registering this variable.

• varname – Name of the variable to be registered, e.g. “DVS”

flush_rates()

flush the values of all published rate variable from the kiosk.

flush_states()

flush the values of all state variable from the kiosk.

register_variable(oid, varname, type, publish=False)
Register a varname from object with id, with given type

Parameters

• oid – Object id (from python builtin id() function) of the state/rate object
registering this variable.

• varname – Name of the variable to be registered, e.g. “DVS”

• type – Either “R” (rate) or “S” (state) variable, is handled automatically by
the states/rates template class.

• publish – True if variable should be published in the kiosk, defaults to False

set_variable(id, varname, value)
Let object with id, set the value of variable varname

Parameters

110 Chapter 5. Code documentation

PCSE Documentation, Release 5.5

• id – Object id (from python builtin id() function) of the state/rate object
registering this variable.

• varname – Name of the variable to be updated

• value – Value to be assigned to the variable.

variable_exists(varname)
Returns True if the state/rate variable is registered in the kiosk.

Parameters
varname – Name of the variable to be checked for registration.

Base classes for parameters, rates and states

class pcse.base.StatesTemplate(**kwargs)
Takes care of assigning initial values to state variables, registering variables in the kiosk and mon-
itoring assignments to variables that are published.

Parameters

• kiosk – Instance of the VariableKiosk class. All state variables will be regis-
tered in the kiosk in order to enfore that variable names are unique across the
model. Moreover, the value of variables that are published will be available
through the VariableKiosk.

• publish – Lists the variables whose values need to be published in the Vari-
ableKiosk. Can be omitted if no variables need to be published.

Initial values for state variables can be specified as keyword when instantiating a States class.

example:

>>> import pcse
>>> from pcse.base import VariableKiosk, StatesTemplate
>>> from pcse.traitlets import Float, Integer, Instance
>>> from datetime import date
>>>
>>> k = VariableKiosk()
>>> class StateVariables(StatesTemplate):
... StateA = Float()
... StateB = Integer()
... StateC = Instance(date)
...
>>> s1 = StateVariables(k, StateA=0., StateB=78, StateC=date(2003,7,3),
... publish="StateC")
>>> print s1.StateA, s1.StateB, s1.StateC
0.0 78 2003-07-03
>>> print k
Contents of VariableKiosk:
* Registered state variables: 3
* Published state variables: 1 with values:
- variable StateC, value: 2003-07-03
* Registered rate variables: 0

(continues on next page)

5.1. Code documentation 111

PCSE Documentation, Release 5.5

(continued from previous page)

* Published rate variables: 0 with values:

>>>
>>> s2 = StateVariables(k, StateA=200., StateB=1240)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "pcse/base.py", line 396, in __init__
raise exc.PCSEError(msg)

pcse.exceptions.PCSEError: Initial value for state StateC missing.

touch()

Re-assigns the value of each state variable, thereby updating its value in the variablekiosk if
the variable is published.

class pcse.base.RatesTemplate(**kwargs)
Takes care of registering variables in the kiosk and monitoring assignments to variables that are
published.

Parameters

• kiosk – Instance of the VariableKiosk class. All rate variables will be regis-
tered in the kiosk in order to enfore that variable names are unique across the
model. Moreover, the value of variables that are published will be available
through the VariableKiosk.

• publish – Lists the variables whose values need to be published in the Vari-
ableKiosk. Can be omitted if no variables need to be published.

For an example see the StatesTemplate. The only difference is that the initial value of rate variables
does not need to be specified because the value will be set to zero (Int, Float variables) or False
(Boolean variables).

zerofy()

Sets the values of all rate values to zero (Int, Float) or False (Boolean).

class pcse.base.ParamTemplate(**kwargs)
Template for storing parameter values.

This is meant to be subclassed by the actual class where the parameters are defined.

example:

>>> import pcse
>>> from pcse.base import ParamTemplate
>>> from pcse.traitlets import Float
>>>
>>>
>>> class Parameters(ParamTemplate):
... A = Float()
... B = Float()
... C = Float()
...
>>> parvalues = {"A" :1., "B" :-99, "C":2.45}

(continues on next page)

112 Chapter 5. Code documentation

PCSE Documentation, Release 5.5

(continued from previous page)

>>> params = Parameters(parvalues)
>>> params.A
1.0
>>> params.A; params.B; params.C
1.0
-99.0
2.4500000000000002
>>> parvalues = {"A" :1., "B" :-99}
>>> params = Parameters(parvalues)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "pcse/base.py", line 205, in __init__
raise exc.ParameterError(msg)

pcse.exceptions.ParameterError: Value for parameter C missing.

Base and utility classes for weather data

class pcse.base.WeatherDataProvider

Base class for all weather data providers.

Support for weather ensembles in a WeatherDataProvider has to be indicated by setting the class
variable supports_ensembles = True

Example:

class MyWeatherDataProviderWithEnsembles(WeatherDataProvider):
supports_ensembles = True

def __init__(self):
WeatherDataProvider.__init__(self)

remaining initialization stuff goes here.

check_keydate(key)
Check representations of date for storage/retrieval of weather data.

The following formats are supported:

1. a date object

2. a datetime object

3. a string of the format YYYYMMDD

4. a string of the format YYYYDDD

Formats 2-4 are all converted into a date object internally.

export()

Exports the contents of the WeatherDataProvider as a list of dictionaries.

The results from export can be directly converted to a Pandas dataframe which is convenient
for plotting or analyses.

5.1. Code documentation 113

PCSE Documentation, Release 5.5

class pcse.base.WeatherDataContainer(*args, **kwargs)
Class for storing weather data elements.

Weather data elements are provided through keywords that are also the attribute names under which
the variables can accessed in the WeatherDataContainer. So the keyword TMAX=15 sets an at-
tribute TMAX with value 15.

The following keywords are compulsory:

Parameters

• LAT – Latitude of location (decimal degree)

• LON – Longitude of location (decimal degree)

• ELEV – Elevation of location (meters)

• DAY – the day of observation (python datetime.date)

• IRRAD – Incoming global radiaiton (J/m2/day)

• TMIN – Daily minimum temperature (Celsius)

• TMAX – Daily maximum temperature (Celsius)

• VAP – Daily mean vapour pressure (hPa)

• RAIN – Daily total rainfall (cm/day)

• WIND – Daily mean wind speed at 2m height (m/sec)

• E0 – Daily evaporation rate from open water (cm/day)

• ES0 – Daily evaporation rate from bare soil (cm/day)

• ET0 – Daily evapotranspiration rate from reference crop (cm/day)

There are two optional keywords arguments:

Parameters

• TEMP – Daily mean temperature (Celsius), will otherwise be derived from
(TMAX+TMIN)/2.

• SNOWDEPTH – Depth of snow cover (cm)

add_variable(varname, value, unit)
Adds an attribute <varname> with <value> and given <unit>

Parameters

• varname – Name of variable to be set as attribute name (string)

• value – value of variable (attribute) to be added.

• unit – string representation of the unit of the variable. Is only use for print-
ing the contents of the WeatherDataContainer.

114 Chapter 5. Code documentation

PCSE Documentation, Release 5.5

5.1.9 Signals defined

This module defines and describes the signals used by PCSE

Signals are used by PCSE to notify components of events such as sowing, harvest and termination.
Events can be send by any SimulationObject through its SimulationObject._send_signal() method. Sim-
ilarly, any SimulationObject can receive signals by registering a handler through the SimulationOb-
ject._connect_signal() method. Variables can be passed to the handler of the signal through positional or
keyword arguments. However, it is highly discouraged to use positional arguments when sending signals
in order to avoid conflicts between positional and keyword arguments.

An example can help to clarify how signals are used in PCSE but check also the documentation of the
PyDispatcher package for more information:

import sys, os
import math
sys.path.append('/home/wit015/Sources/python/pcse/')
import datetime as dt

import pcse
from pcse.base import SimulationObject, VariableKiosk

mysignal = "My first signal"

class MySimObj(SimulationObject):

def initialize(self, day, kiosk):
self._connect_signal(self.handle_mysignal, mysignal)

def handle_mysignal(self, arg1, arg2):
print "Value of arg1,2: %s, %s" % (arg1, arg2)

def send_signal_with_exact_arguments(self):
self._send_signal(signal=mysignal, arg2=math.pi, arg1=None)

def send_signal_with_more_arguments(self):
self._send_signal(signal=mysignal, arg2=math.pi, arg1=None,

extra_arg="extra")

def send_signal_with_missing_arguments(self):
self._send_signal(signal=mysignal, arg2=math.pi, extra_arg="extra")

Create an instance of MySimObj
day = dt.date(2000,1,1)
k = VariableKiosk()
mysimobj = MySimObj(day, k)

This sends exactly the right amount of keyword arguments
mysimobj.send_signal_with_exact_arguments()

this sends an additional keyword argument 'extra_arg' which is ignored.
(continues on next page)

5.1. Code documentation 115

http://pydispatcher.sourceforge.net/

PCSE Documentation, Release 5.5

(continued from previous page)

mysimobj.send_signal_with_more_arguments()

this sends the signal with a missing 'arg1' keyword argument which the handler
expects and thus causes an error, raising a TypeError
try:

mysimobj.send_signal_with_missing_arguments()
except TypeError, exc:

print "TypeError occurred: %s" % exc

Saving this code as a file test_signals.py and importing it gives the following output:

>>> import test_signals
Value of arg1,2: None, 3.14159265359
Value of arg1,2: None, 3.14159265359
TypeError occurred: handle_mysignal() takes exactly 3 non-keyword arguments␣
→˓(1 given)

Currently the following signals are used within PCSE with the following keywords.

CROP_START

Indicates that a new crop cycle will start:

self._send_signal(signal=signals.crop_start, day=<date>,
crop_name=<string>, variety_name=<string>, crop_start_type=<string>,
crop_end_type=<string>)

keyword arguments with signals.crop_start:

• day: Current date

• crop_name: a string identifying the crop

• variety_name: a string identifying the crop variety

• crop_start_type: either ‘sowing’ or ‘emergence’

• crop_end_type: either ‘maturity’, ‘harvest’ or ‘earliest’

CROP_FINISH

Indicates that the current crop cycle is finished:

self._send_signal(signal=signals.crop_finish, day=<date>,
finish_type=<string>, crop_delete=<True|False>)

keyword arguments with signals.crop_finish:

• day: Current date

• finish_type: string describing the reason for finishing the simulation, e.g. maturity, harvest, all
leaves died, maximum duration reached, etc.

• crop_delete: Set to True when the CropSimulation object must be deleted from the system, for
example for the implementation of crop rotations. Defaults to False.

TERMINATE

116 Chapter 5. Code documentation

PCSE Documentation, Release 5.5

Indicates that the entire system should terminate (crop & soil water balance) and that terminal
output should be collected:

self._send_signal(signal=signals.terminate)

No keyword arguments are defined for this signal

OUTPUT

Indicates that the model state should be saved for later use:

self._send_signal(signal=signals.output)

No keyword arguments are defined for this signal

SUMMARY_OUTPUT

Indicates that the model state should be saved for later use, SUMMARY_OUTPUT is only
generated when a CROP_FINISH signal is received indicating that the crop simulation must
finish:

self._send_signal(signal=signals.output)

No keyword arguments are defined for this signal

APPLY_NPK

Is used for application of Nitrate/Phosphate/Potassium (N/P/K) fertilizer:

self._send_signal(signal=signals.apply_npk, N_amount=<float>, P_amount=<float>
→˓, K_amount=<float>,

N_recovery<float>, P_recovery=<float>, K_recovery=<float>)

Keyword arguments with signals.apply_npk:

• N/P/K_amount: Amount of fertilizer in kg/ha applied on this day.

• N/P/K_recovery: Recovery fraction for the given type of fertilizer

IRRIGATE

Is used for sending irrigation events:

self._send_signal(signal=signals.irrigate, amount=<float>, efficiency=<float>)

Keyword arguments with signals.irrigate:

• amount: Amount of irrigation in cm water applied on this day.

• efficiency: efficiency of irrigation, meaning that the total amount of water that is added to the soil
reservoir equals amount * efficiency

MOWING

Is used for sending mowing events used by the LINGRA/LINGRA-N models:

self._send_signal(signal=signals.mowing, biomass_remaining=<float>)

Keyword arguments with signals.mowing:

5.1. Code documentation 117

PCSE Documentation, Release 5.5

• biomass_remaining: The amount of biomass remaining after mowing in kg/ha.

5.1.10 Utilities

The utilities section deals with tools for reading weather data and parameter values from files or databases.

Tools for reading input files

The file_input tools contain several classes for reading weather files, parameter files and agromanagement
files.

class pcse.fileinput.CABOFileReader(fname)
Reads CABO files with model parameter definitions.

The parameter definitions of Wageningen crop models are generally written in the CABO format.
This class reads the contents, parses the parameter names/values and returns them as a dictionary.

Parameters
fname – parameter file to read and parse

Returns
dictionary like object with parameter key/value pairs.

Note that this class does not yet fully support reading all features of CABO files. For example, the
parsing of booleans, date/times and tabular parameters is not supported and will lead to errors.

The header of the CABO file (marked with ** at the first line) is read and can be retrieved by the
get_header() method or just by a print on the returned dictionary.

Example

A parameter file ‘parfile.cab’ which looks like this:

** CROP DATA FILE for use with WOFOST Version 5.4, June 1992
**
** WHEAT, WINTER 102
** Regions: Ireland, central en southern UK (R72-R79),
** Netherlands (not R47), northern Germany (R11-R14)
CRPNAM='Winter wheat 102, Ireland, N-U.K., Netherlands, N-Germany'
CROP_NO=99
TBASEM = -10.0 ! lower threshold temp. for emergence [cel]
DTSMTB = 0.00, 0.00, ! daily increase in temp. sum

30.00, 30.00, ! as function of av. temp. [cel; cel d]
45.00, 30.00

** maximum and minimum concentrations of N, P, and K
** in storage organs in vegetative organs [kg kg-1]
NMINSO = 0.0110 ; NMINVE = 0.0030

Can be read with the following statements:

>>>fileparameters = CABOFileReader('parfile.cab')
>>>print fileparameters['CROP_NO']
99

(continues on next page)

118 Chapter 5. Code documentation

PCSE Documentation, Release 5.5

(continued from previous page)

>>>print fileparameters
** CROP DATA FILE for use with WOFOST Version 5.4, June 1992
**
** WHEAT, WINTER 102
** Regions: Ireland, central en southern UK (R72-R79),
** Netherlands (not R47), northern Germany (R11-R14)

TBASEM: -10.0 <type 'float'>
DTSMTB: [0.0, 0.0, 30.0, 30.0, 45.0, 30.0] <type 'list'>
NMINVE: 0.003 <type 'float'>
CROP_NO: 99 <type 'int'>
CRPNAM: Winter wheat 102, Ireland, N-U.K., Netherlands, N-Germany <type
→˓'str'>
NMINSO: 0.011 <type 'float'>

copy()

Overrides the inherited dict.copy method, which returns a dict. This instead preserves the
class and attributes like .header.

class pcse.fileinput.CABOWeatherDataProvider(fname, fpath=None, ETmodel='PM',
distance=1)

Reader for CABO weather files.

Parameters

• fname – root name of CABO weather files to read

• fpath – path where to find files, can be absolute or relative.

• ETmodel – “PM”|”P” for selecting penman-monteith or Penman method for
reference evapotranspiration. Defaults to “PM”.

• distance – maximum interpolation distance for meteorological variables, de-
faults to 1 day.

Returns
callable like object with meteo records keyed on date.

The Wageningen crop models that are written in FORTRAN or FST often use the CABO weather
system (http://edepot.wur.nl/43010) for storing and reading weather data. This class implements
a reader for the CABO weather files and also implements additional features like interpolation
of weather data in case of missing values, conversion of sunshine duration to global radiation
estimates and calculation the reference evapotranspiration values for water, soil and plants (E0,
ES0, ET0) using the Penman approach.

A difference with the old CABOWE system is that the python implementation will read and store
all files (e.g. years) available for a certain station instead of loading a new file when crossing a year
boundary.

Note: some conversions are done by the CABOWeaterDataProvider from the units in the CABO
weather file for compatibility with WOFOST:

• vapour pressure from kPa to hPa

• radiation from kJ/m2/day to J/m2/day

5.1. Code documentation 119

http://edepot.wur.nl/43010

PCSE Documentation, Release 5.5

• rain from mm/day to cm/day.

• all evaporation/transpiration rates are also returned in cm/day.

Example

The file ‘nl1.003’ provides weather data for the year 2003 for the station in Wageningen and can
be found in the cabowe/ folder of the WOFOST model distribution. This file can be read using:

>>> weather_data = CABOWeatherDataProvider('nl1', fpath="./meteo/cabowe")
>>> print weather_data(datetime.date(2003,7,26))
Weather data for 2003-07-26 (DAY)
IRRAD: 12701000.00 J/m2/day
TMIN: 15.90 Celsius
TMAX: 23.00 Celsius
VAP: 16.50 hPa
WIND: 3.00 m/sec
RAIN: 0.12 cm/day

E0: 0.36 cm/day
ES0: 0.32 cm/day
ET0: 0.31 cm/day

Latitude (LAT): 51.97 degr.
Longitude (LON): 5.67 degr.
Elevation (ELEV): 7.0 m.

Alternatively the date in the print command above can be specified as string with format YYYYM-
MDD or YYYYDDD.

class pcse.fileinput.PCSEFileReader(fname)
Reader for parameter files in the PCSE format.

This class is a replacement for the CABOFileReader. The latter can be used for reading parameter
files in the CABO format, however this format has rather severe limitations: it only supports string,
integer, float and array parameters. There is no support for specifying parameters with dates for
example (other then specifying them as a string).

The PCSEFileReader is a much more versatile tool for creating parameter files because it leverages
the power of the python interpreter for processing parameter files through the execfile functionality
in python. This means that anything that can be done in a python script can also be done in a PCSE
parameter file.

Parameters
fname – parameter file to read and parse

Returns
dictionary object with parameter key/value pairs.

Example

Below is an example of a parameter file ‘parfile.pcse’. Parameters can be defined the ‘CABO’-way,
but also advanced functionality can be used by importing modules, defining parameters as dates
or numpy arrays and even applying function on arrays (in this case np.sin):

'''This is the header of my parameter file.

(continues on next page)

120 Chapter 5. Code documentation

PCSE Documentation, Release 5.5

(continued from previous page)

This file is derived from the following sources
* dummy file for demonstrating the PCSEFileReader
* contains examples how to leverage dates, arrays and functions, etc.
'''

import numpy as np
import datetime as dt

TSUM1 = 1100
TSUM2 = 900
DTSMTB = [0., 0.,

5., 5.,
20., 25.,
30., 25.]

AMAXTB = np.sin(np.arange(12))
cropname = 'alfalfa'
CROP_START_DATE = dt.date(2010,5,14)

Can be read with the following statements:

>>>fileparameters = PCSEFileReader('parfile.pcse')
>>>print fileparameters['TSUM1']
1100
>>>print fileparameters['CROP_START_DATE']
2010-05-14
>>>print fileparameters
PCSE parameter file contents loaded from:
D:\UserData\pcse_examples\parfile.pw

This is the header of my parameter file.

This file is derived from the following sources
* dummy file for demonstrating the PCSEFileReader
* contains examples how to leverage dates, arrays and functions, etc.
DTSMTB: [0.0, 0.0, 5.0, 5.0, 20.0, 25.0, 30.0, 25.0] (<type 'list'>)
CROP_START_DATE: 2010-05-14 (<type 'datetime.date'>)
TSUM2: 900 (<type 'int'>)
cropname: alfalfa (<type 'str'>)
AMAXTB: [0. 0.84147098 0.90929743 0.14112001 -0.7568025
-0.95892427 -0.2794155 0.6569866 0.98935825 0.41211849
-0.54402111 -0.99999021] (<type 'numpy.ndarray'>)

TSUM1: 1100 (<type 'int'>)

copy()

Overrides the inherited dict.copy method, which returns a dict. This instead preserves the
class and attributes like .header.

class pcse.fileinput.ExcelWeatherDataProvider(xls_fname, missing_snow_depth=None,
force_reload=False)

Reading weather data from an excel file (.xlsx only).

5.1. Code documentation 121

PCSE Documentation, Release 5.5

Parameters

• xls_fname – name of the Excel file to be read

• mising_snow_depth – the value that should use for missing SNOW_DEPTH
values, the default value is None.

• force_reload – bypass the cache file, reload data from the .xlsx file and write
a new cache file. Cache files are written under $HOME/.pcse/meteo_cache

For reading weather data from file, initially only the CABOWeatherDataProvider was available that
reads its data from a text file in the CABO Weather format. Nevertheless, building CABO weather
files is tedious as for each year a new file must constructed. Moreover it is rather error prone and
formatting mistakes are easily leading to errors.

To simplify providing weather data to PCSE models, a new data provider was written that reads its
data from simple excel files

The ExcelWeatherDataProvider assumes that records are complete and does not make an effort to
interpolate data as this can be easily accomplished in Excel itself. Only SNOW_DEPTH is allowed
to be missing as this parameter is usually not provided outside the winter season.

class pcse.fileinput.CSVWeatherDataProvider(csv_fname, delimiter=',',
dateformat='%Y%m%d', ETmodel='PM',
force_reload=False)

Reading weather data from a CSV file.

Parameters

• csv_fname – name of the CSV file to be read

• delimiter – CSV delimiter

• dateformat – date format to be read. Default is ‘%Y%m%d’

• ETmodel – “PM”|”P” for selecting Penman-Monteith or Penman method for
reference evapotranspiration. Default is ‘PM’.

• force_reload – Ignore cache file and reload from the CSV file

The CSV file should have the following structure (sample), missing values should be added as
‘NaN’:

Site Characteristics
Country = 'Netherlands'
Station = 'Wageningen, Haarweg'
Description = 'Observed data from Station Haarweg in Wageningen'
Source = 'Meteorology and Air Quality Group, Wageningen University'
Contact = 'Peter Uithol'
Longitude = 5.67; Latitude = 51.97; Elevation = 7; AngstromA = 0.18;␣
→˓AngstromB = 0.55; HasSunshine = False
Daily weather observations (missing values are NaN)
DAY,IRRAD,TMIN,TMAX,VAP,WIND,RAIN,SNOWDEPTH
20040101,NaN,-0.7,1.1,0.55,3.6,0.5,NaN
20040102,3888,-7.5,0.9,0.44,3.1,0,NaN
20040103,2074,-6.8,-0.5,0.45,1.8,0,NaN
20040104,1814,-3.6,5.9,0.66,3.2,2.5,NaN

(continues on next page)

122 Chapter 5. Code documentation

PCSE Documentation, Release 5.5

(continued from previous page)

20040105,1469,3,5.7,0.78,2.3,1.3,NaN
[...]

with
IRRAD in kJ/m2/day or hours
TMIN and TMAX in Celsius (°C)
VAP in kPa
WIND in m/sec
RAIN in mm
SNOWDEPTH in cm

For reading weather data from a file, initially the CABOWeatherDataProvider was available which
read its data from text in the CABO weather format. Nevertheless, building CABO weather files
is tedious as for each year a new file must constructed. Moreover it is rather error prone and
formatting mistakes are easily leading to errors.

To simplify providing weather data to PCSE models, a new data provider has been derived from
the ExcelWeatherDataProvider that reads its data from simple CSV files.

The CSVWeatherDataProvider assumes that records are complete and does not make an effort to
interpolate data as this can be easily accomplished in a text editor. Only SNOWDEPTH is allowed
to be missing as this parameter is usually not provided outside the winter season.

class pcse.fileinput.YAMLAgroManagementReader(fname)
Reads PCSE agromanagement files in the YAML format.

Parameters
fname – filename of the agromanagement file. If fname is not provided as a abso-
lute or relative path the file is assumed to be in the current working directory.

class pcse.fileinput.YAMLCropDataProvider(fpath=None, repository=None,
force_reload=False)

A crop data provider for reading crop parameter sets stored in the YAML format.

param fpath
full path to directory containing YAML files

param repository
URL to repository containg YAML files. This url should be the raw con-
tent (e.g. starting with ‘https://raw.githubusercontent.com’)

param force_reload
If set to True, the cache file is ignored and al parameters are reloaded
(default False).

This crop data provider can read and store the parameter sets for multiple crops which is dif-
ferent from most other crop data providers that only can hold data for a single crop. This crop
data providers is therefore suitable for running crop rotations with different crop types as the data
provider can switch the active crop.

The most basic use is to call YAMLCropDataProvider with no parameters. It will than pull
the crop parameters from my github repository at https://github.com/ajwdewit/WOFOST_crop_
parameters:

5.1. Code documentation 123

https://raw.githubusercontent.com
https://github.com/ajwdewit/WOFOST_crop_parameters
https://github.com/ajwdewit/WOFOST_crop_parameters

PCSE Documentation, Release 5.5

>>> from pcse.fileinput import YAMLCropDataProvider
>>> p = YAMLCropDataProvider()
>>> print(p)
YAMLCropDataProvider - crop and variety not set: no activate crop␣
→˓parameter set!

All crops and varieties have been loaded from the YAML file, however no activate crop has been
set. Therefore, we need to activate a a particular crop and variety:

>>> p.set_active_crop('wheat', 'Winter_wheat_101')
>>> print(p)
YAMLCropDataProvider - current active crop 'wheat' with variety 'Winter_
→˓wheat_101'
Available crop parameters:
{'DTSMTB': [0.0, 0.0, 30.0, 30.0, 45.0, 30.0], 'NLAI_NPK': 1.0, 'NRESIDLV
→˓': 0.004,
'KCRIT_FR': 1.0, 'RDRLV_NPK': 0.05, 'TCPT': 10, 'DEPNR': 4.5, 'KMAXRT_FR
→˓': 0.5,
...
...
'TSUM2': 1194, 'TSUM1': 543, 'TSUMEM': 120}

Additionally, it is possible to load YAML parameter files from your local file system:

>>> p = YAMLCropDataProvider(fpath=r"D:\UserData\sources\WOFOST_crop_
→˓parameters")
>>> print(p)
YAMLCropDataProvider - crop and variety not set: no activate crop␣
→˓parameter set!

Finally, it is possible to pull data from your fork of my github repository by specifying the URL to
that repository:

>>> p = YAMLCropDataProvider(repository="https://raw.githubusercontent.
→˓com/<your_account>/WOFOST_crop_parameters/master/")

To increase performance of loading parameters, the YAMLCropDataProvider will create a cache
file that can be restored much quicker compared to loading the YAML files. When reading YAML
files from the local file system, care is taken to ensure that the cache file is re-created when updates
to the local YAML are made. However, it should be stressed that this is not possible when parame-
ters are retrieved from a URL and there is a risk that parameters are loaded from an outdated cache
file. In that case use force_reload=True to force loading the parameters from the URL.

124 Chapter 5. Code documentation

PCSE Documentation, Release 5.5

Simple or dummy data providers

This class of data providers can be used to provide parameter values in cases where separate files or a
database is not needed or not practical. An example is the set of soil parameters for simulation of potential
production conditions where the value of the parameters does not matter but nevertheless some values
must be provided to the model.

class pcse.util.DummySoilDataProvider

This class is to provide some dummy soil parameters for potential production simulation.

Simulation of potential production levels is independent of the soil. Nevertheless, the model does
not some parameter values. This data provider provides some hard coded parameter values for this
situation.

class pcse.util.WOFOST72SiteDataProvider(**kwargs)
Site data provider for WOFOST 7.2.

Site specific parameters for WOFOST 7.2 can be provided through this data provider as well as
through a normal python dictionary. The sole purpose of implementing this data provider is that
the site parameters for WOFOST are documented, checked and that sensible default values are
given.

The following site specific parameter values can be set through this data provider:

- IFUNRN Indicates whether non-infiltrating fraction of rain is a␣
→˓function of storm size (1)

or not (0). Default 0
- NOTINF Maximum fraction of rain not-infiltrating into the soil [0-1],
→˓ default 0.
- SSMAX Maximum depth of water that can be stored on the soil surface␣
→˓[cm]
- SSI Initial depth of water stored on the surface [cm]
- WAV Initial amount of water in total soil profile [cm]
- SMLIM Initial maximum moisture content in initial rooting depth␣
→˓zone [0-1], default 0.4

Currently only the value for WAV is mandatory to specify.

class pcse.util.WOFOST80SiteDataProvider(**kwargs)
Site data provider for WOFOST 8.0.

Site specific parameters for WOFOST 8.0 can be provided through this data provider as well as
through a normal python dictionary. The sole purpose of implementing this data provider is that
the site parameters for WOFOST are documented, checked and that sensible default values are
given.

The following site specific parameter values can be set through this data provider:

- IFUNRN Indicates whether non-infiltrating fraction of rain is a␣
→˓function of

storm size (1) or not (0). Default 0
- NOTINF Maximum fraction of rain not-infiltrating into the soil␣
→˓[0-1],

default 0.
(continues on next page)

5.1. Code documentation 125

PCSE Documentation, Release 5.5

(continued from previous page)

- SSMAX Maximum depth of water that can be stored on the soil␣
→˓surface [cm]
- SSI Initial depth of water stored on the surface [cm]
- WAV Initial amount of water in total soil profile [cm]
- SMLIM Initial maximum moisture content in initial rooting depth␣
→˓zone [0-1],

default 0.4
- CO2 Atmospheric CO2 level (ppm), default 360.
- BG_N_SUPPLY Background N supply through atmospheric deposition in kg/
→˓ha/day. Can be

in the order of 25 kg/ha/year in areas with high N␣
→˓pollution. Default 0.0
- NSOILBASE Base N amount available in the soil. This is often␣
→˓estimated as the nutrient

left over from the previous growth cycle (surplus␣
→˓nutrients, crop residues

or green manure).
- NSOILBASE_FR Daily fraction of soil N coming available through␣
→˓mineralization
- BG_P_SUPPLY Background P supply in kg/ha/day. Usually this is mainly␣
→˓through deposition

of dust and an order of magnitude smaller than N␣
→˓deposition. Default 0.0
- PSOILBASE Base P amount available in the soil.
- PSOILBASE_FR Daily fraction of soil P coming available through␣
→˓mineralization
- BG_K_SUPPLY Background P supply in kg/ha/day. Default 0.0
- KSOILBASE Base K amount available in the soil
- KSOILBASE_FR Daily fraction of soil K coming available through␣
→˓mineralization
- NAVAILI Amount of N available in the pool at initialization of␣
→˓the system [kg/ha]
- PAVAILI Amount of P available in the pool at initialization of␣
→˓the system [kg/ha]
- KAVAILI Amount of K available in the pool at initialization of␣
→˓the system [kg/ha]

Currently, the parameters for initial water availability (WAV) and initial availability of nutrients
(NAVAILI, PAVAILI, KAVAILI) are mandatory to specify.

126 Chapter 5. Code documentation

PCSE Documentation, Release 5.5

The database tools

The database tools contain functions and classes for retrieving agromanagement, parameter values and
weather variables from database structures implemented for different versions of the European Crop
Growth Monitoring System.

Note that the data providers only provide functionality for reading data, there are no tools here writing
simulation results to a CGMS database. This was done on purpose as writing data can be a complex
matter and it is our experience that this can be done more easily with dedicated database loader tools
such as SQLLoader for ORACLE or the load data infile syntax of MySQL

The CGMS8 database

The CGMS8 tools are for reading data from a database structure that is used by CGMS executable version
9 and 10.

class pcse.db.cgms8.GridWeatherDataProvider(engine, grid_no, start_date=None,
end_date=None, recalc_ET=False,
use_cache=True)

Retrieves meteodata from the GRID_WEATHER table in a CGMS database.

Parameters

• metadata – SqlAlchemy metadata object providing DB access

• grid_no – CGMS Grid ID

• startdate – Retrieve meteo data starting with startdate (datetime.date object)

• enddate – Retrieve meteo data up to and including enddate (datetime.date
object)

• recalc_ET – Set to True to force calculation of reference ET values. Mostly
useful when values have not been calculated in the CGMS database.

• use_cache – Set to False to ignore read/writing a cache file.

Note that all meteodata is first retrieved from the DB and stored internally. Therefore, no DB
connections are stored within the class instance. This makes that class instances can be pickled.

class pcse.db.cgms8.SoilDataIterator(engine, grid_no)
Soil data iterator for CGMS8.

The only difference is that in CGMS8 the table is called ‘ELEMENTARY_MAPPING_UNIT’ and
in CGMS12 it is called ‘EMU’

class pcse.db.cgms8.CropDataProvider(engine, grid_no, crop_no, campaign_year)
Retrieves the crop parameters for the given grid_no, crop_no and year from the tables
CROP_CALENDAR, CROP_PARAMETER_VALUE and VARIETY_PARAMETER_VALUE.

Parameters

• engine – SqlAlchemy engine object providing DB access

• grid_no – Integer grid ID, maps to the GRID_NO column in the table

• crop_no – Integer crop ID, maps to the CROP_NO column in the table

5.1. Code documentation 127

http://www.oracle.com/technetwork/database/enterprise-edition/sql-loader-overview-095816.html

PCSE Documentation, Release 5.5

• campaign_year – Integer campaign year, maps to the YEAR column in the
table. The campaign year usually refers to the year of the harvest. Thus for
crops crossing calendar years, the start_date can be in the previous year.

class pcse.db.cgms8.STU_Suitability(engine, crop_no)
Returns a set() of suitable STU’s for given crop_no.

Parameters

• engine – SqlAlchemy engine object providing DB access

• crop_no – Integer crop ID, maps to the CROP_NO column in the table

class pcse.db.cgms8.SiteDataProvider(engine, grid_no, crop_no, campaign_year, stu_no)
Provides the site data from the tables INITIAL_SOIL_WATER and SITE.

Parameters

• engine – SqlAlchemy engine object providing DB access

• grid_no – Grid number (int)

• crop_no – Crop number (int)

• campaign_year – Campaign year (int)

• stu_no – soil typologic unit number (int)

Note that the parameter SSI (Initial surface storage) is set to zero

Moreover, the start date of the water balance is defined by the column
GIVEN_STARTDATE_WATBAL. This value can be accessed as an attribute
start_date_waterbalance.

The CGMS12 database

The CGMS12 tools are for reading data from a CGMS12 database structure that is used by CGMS exe-
cutable version 11 and BioMA 2014.

Tools for reading weather data and timer, soil and site parameters from a CGMS12 compatible database.

class pcse.db.cgms12.WeatherObsGridDataProvider(engine, grid_no, start_date=None,
end_date=None, recalc_ET=False,
recalc_TEMP=False, use_cache=True)

Retrieves meteodata from the WEATHER_OBS_GRID table in a CGMS12 compatible database.

Parameters

• engine – SqlAlchemy engine object providing DB access

• grid_no – Grid number (int) to retrieve data for

• start_date – Retrieve meteo data starting with start_date (datetime.date ob-
ject)

• end_date – Retrieve meteo data up to and including end_date (datetime.date
object)

128 Chapter 5. Code documentation

PCSE Documentation, Release 5.5

• recalc_ET – Set to True to force calculation of reference ET values. Mostly
useful when values have not been calculated in the CGMS database.

• recalc_TEMP – Set to True to force calculation of daily average temperature
(TEMP) from TMIN and TMAX: TEMP = (TMIN+TMAX)/2.

Note that all meteodata is first retrieved from the DB and stored internally. Therefore, no DB
connections are stored within the class instance. This makes that class instances can be pickled.

If start_date and end_date are not provided then the entire time-series for the grid is retrieved.

class pcse.db.cgms12.AgroManagementDataProvider(engine, grid_no, crop_no,
campaign_year,
campaign_start=None)

Class for providing agromanagement data from the CROP_CALENDAR table in a CGMS12
database.

Parameters

• engine – SqlAlchemy engine object providing DB access

• grid_no – Integer grid ID, maps to the grid_no column in the table

• crop_no – Integer id of crop, maps to the crop_no column in the table

• campaign_year – Integer campaign year, maps to the YEAR column in the
table. The campaign year usually refers to the year of the harvest. Thus for
crops crossing calendar years, the start_date can be in the previous year.

• campaign_start – Optional keyword that can be used to define the start of
the campaign. Note that by default the campaign_start_date is set equal to the
crop_start_date which means that the simulation starts when the crop starts.
This default behaviour can be changed using this keyword. It can have multiple
meanings:

– if a date object is passed, the campaign is assumed to start on this date.

– if an int/float is passed, the campaign_start_date is calculated as the
crop_start_date minus the number of days provided by campaign_start.

For adjusting the campaign_start_Date, see also the set_campaign_start_date(date) method to up-
date the campaign_start_date on an existing AgroManagementDataProvider.

set_campaign_start_date(start_date)
Updates the value for the campaign_start_date.

This is useful only when the INITIAL_SOIL_WATER table in CGMS12 defines a different
campaign_start

class pcse.db.cgms12.SoilDataIterator(engine, grid_no)
Class for iterating over the different soils in a CGMS grid.

Instances of this class behave like a list, allowing to iterate over the soils in a CGMS grid. An
example:

>>> soil_iterator = SoilDataIterator(engine, grid_no=15060)
>>> print(soildata)
Soil data for grid_no=15060 derived from oracle+cx_oracle://
→˓cgms12eu:***@eurdas.world

(continues on next page)

5.1. Code documentation 129

PCSE Documentation, Release 5.5

(continued from previous page)

smu_no=9050131, area=625000000, stu_no=9000282 covering 50% of smu.
Soil parameters {'SMLIM': 0.312, 'SMFCF': 0.312, 'SMW': 0.152, 'CRAIRC

→˓': 0.06,
'KSUB': 10.0, 'RDMSOL': 10.0, 'K0': 10.0, 'SOPE': 10.

→˓0, 'SM0': 0.439}
smu_no=9050131, area=625000000, stu_no=9000283 covering 50% of smu.

Soil parameters {'SMLIM': 0.28325, 'SMFCF': 0.28325, 'SMW': 0.12325,
→˓'CRAIRC': 0.06,

'KSUB': 10.0, 'RDMSOL': 40.0, 'K0': 10.0, 'SOPE': 10.
→˓0, 'SM0': 0.42075}
>>> for smu_no, area, stu_no, percentage, soil_par in soildata:
... print(smu_no, area, stu_no, percentage)
...
(9050131, 625000000, 9000282, 50)
(9050131, 625000000, 9000283, 50)

class pcse.db.cgms12.CropDataProvider(engine, grid_no, crop_no, campaign_year)
Retrieves the crop parameters for the given grid_no, crop_no and year from the tables
CROP_CALENDAR, CROP_PARAMETER_VALUE and VARIETY_PARAMETER_VALUE.

Parameters

• engine – SqlAlchemy engine object providing DB access

• grid_no – Integer grid ID, maps to the GRID_NO column in the table

• crop_no – Integer crop ID, maps to the CROP_NO column in the table

• campaign_year – Integer campaign year, maps to the YEAR column in the
table. The campaign year usually refers to the year of the harvest. Thus for
crops crossing calendar years, the start_date can be in the previous year.

class pcse.db.cgms12.STU_Suitability(engine, crop_no)
Returns a set() of suitable STU’s for given crop_no.

Parameters

• engine – SqlAlchemy engine object providing DB access

• crop_no – Integer crop ID, maps to the CROP_NO column in the table

class pcse.db.cgms12.SiteDataProvider(engine, grid_no, crop_no, campaign_year, stu_no)
Provides the site data from the tables INITIAL_SOIL_WATER and SITE.

Parameters

• engine – SqlAlchemy engine object providing DB access

• grid_no – Grid number (int)

• crop_no – Crop number (int)

• campaign_year – Campaign year (int)

• stu_no – soil typologic unit number (int)

Note that the parameter SSI (Initial surface storage) is set to zero

130 Chapter 5. Code documentation

PCSE Documentation, Release 5.5

Moreover, the start date of the water balance is defined by the column
GIVEN_STARTDATE_WATBAL. This value can be accessed as an attribute
start_date_waterbalance.

The CGMS14 database

The CGMS14 database is the database structure that is compatible with the 2015 BioMA implementa-
tion of WOFOST. Note that the CGMS14 database structure is considerably different from CGMS8 and
CGMS12.

The NASA POWER database

class pcse.db.NASAPowerWeatherDataProvider(latitude, longitude, force_update=False,
ETmodel='PM')

WeatherDataProvider for using the NASA POWER database with PCSE

Parameters

• latitude – latitude to request weather data for

• longitude – longitude to request weather data for

• force_update – Set to True to force to request fresh data from POWER web-
site.

• ETmodel – “PM”|”P” for selecting penman-monteith or Penman method for
reference evapotranspiration. Defaults to “PM”.

The NASA POWER database is a global database of daily weather data specifically designed for
agrometeorological applications. The spatial resolution of the database is 0.5x0.5 degrees (as
of 2018). It is derived from weather station observations in combination with satellite data for
parameters like radiation.

The weather data is updated with a delay of about 3 months which makes the database unsuitable
for real-time monitoring, nevertheless the POWER database is useful for many other studies and
it is a major improvement compared to the monthly weather data that were used with WOFOST in
the past.

For more information on the NASA POWER database see the documentation at: http://power.larc.
nasa.gov/common/AgroclimatologyMethodology/Agro_Methodology_Content.html

The NASAPowerWeatherDataProvider retrieves the weather from the th NASA POWER API and
does the necessary conversions to be compatible with PCSE. After the data has been retrieved and
stored, the contents are dumped to a binary cache file. If another request is made for the same
location, the cache file is loaded instead of a full request to the NASA Power server.

Cache files are used until they are older then 90 days. After 90 days the NASAPowerWeatherDat-
aProvider will make a new request to obtain more recent data from the NASA POWER server. If
this request fails it will fall back to the existing cache file. The update of the cache file can be
forced by setting force_update=True.

Finally, note that any latitude/longitude within a 0.5x0.5 degrees grid box will yield the same
weather data, e.g. there is no difference between lat/lon 5.3/52.1 and lat/lon 5.1/52.4. Nevertheless
slight differences in PCSE simulations may occur due to small differences in day length.

5.1. Code documentation 131

http://power.larc.nasa.gov/common/AgroclimatologyMethodology/Agro_Methodology_Content.html
http://power.larc.nasa.gov/common/AgroclimatologyMethodology/Agro_Methodology_Content.html

PCSE Documentation, Release 5.5

Convenience routines

These routines are there for conveniently starting a WOFOST simulation for the demonstration and tuto-
rials. They can serve as an example to build your own script but have no further relevance.

pcse.start_wofost.start_wofost(grid=31031, crop=1, year=2000, mode='wlp', dsn=None)
Provides a convenient interface for starting a WOFOST instance

If started with no arguments, the routine will connnect to the demo database and initialize
WOFOST for winter-wheat (cropno=1) in Spain (grid_no=31031) for the year 2000 in water-
limited production (mode=’wlp’)

Parameters

• grid – grid number, defaults to 31031

• crop – crop number, defaults to 1 (winter-wheat in the demo database)

• year – year to start, defaults to 2000

• mode – production mode (‘pp’ or ‘wlp’), defaults to ‘wlp’

• dsn – PCSE DB as SQLAlchemy data source name defaults to None and in
that case a connection to the demo database will be established.

example:

>>> import pcse
>>> wofsim = pcse.start_wofost(grid=31031, crop=1, year=2000,
... mode='wlp')
>>>
>>> wofsim
<pcse.models.Wofost71_WLP_FD at 0x35f2550>
>>> wofsim.run(days=300)
>>> wofsim.get_variable('tagp')
15261.752187075261

Miscelaneous utilities

Many miscelaneous for a variety of purposes such as the Arbitrary Function Generator (AfGen) for linear
interpolation and functions for calculating Penman Penman/Monteith reference evapotranspiration, the
Angstrom equation and astronomical calculations such as day length.

pcse.util.reference_ET(DAY, LAT, ELEV, TMIN, TMAX, IRRAD, VAP, WIND, ANGSTA,
ANGSTB, ETMODEL='PM', **kwargs)

Calculates reference evapotranspiration values E0, ES0 and ET0.

The open water (E0) and bare soil evapotranspiration (ES0) are calculated with the
modified Penman approach, while the references canopy evapotranspiration is calcu-
lated with the modified Penman or the Penman-Monteith approach, the latter is the
default.

Input variables:

132 Chapter 5. Code documentation

PCSE Documentation, Release 5.5

DAY - Python datetime.date object -
LAT - Latitude of the site degrees
ELEV - Elevation above sea level m
TMIN - Minimum temperature C
TMAX - Maximum temperature C
IRRAD - Daily shortwave radiation J m-2 d-
→˓1
VAP - 24-hour average vapour pressure hPa
WIND - 24-hour average windspeed at 2 meter m/s
ANGSTA - Empirical constant in Angstrom formula -
ANGSTB - Empirical constant in Angstrom formula -
ETMODEL - Indicates if the canopy reference ET should PM|P

be calculated with the Penman-Monteith method
(PM) or the modified Penman method (P)

Output is a tuple (E0, ES0, ET0):

E0 - Penman potential evaporation from a free
water surface [mm/d]

ES0 - Penman potential evaporation from a moist
bare soil surface [mm/d]

ET0 - Penman or Penman-Monteith potential␣
→˓evapotranspiration from a

crop canopy [mm/d]

Note: The Penman-Monteith algorithm is valid only for a reference canopy, and therefore it is not
used to calculate the reference values for bare soil and open water (ES0, E0).

The background is that the Penman-Monteith model is basically a surface energy balance where
the net solar radiation is partitioned over latent and sensible heat fluxes (ignoring the soil heat flux).
To estimate this partitioning, the PM method makes a connection between the surface temperature
and the air temperature. However, the assumptions underlying the PM model are valid only when
the surface where this partitioning takes place is the same for the latent and sensible heat fluxes.

For a crop canopy this assumption is valid because the leaves of the canopy form the surface where
both latent heat flux (through stomata) and sensible heat flux (through leaf temperature) are par-
titioned. For a soil, this principle does not work because when the soil is drying the evaporation
front will quickly disappear below the surface and therefore the assumption that the partitioning
surface is the same does not hold anymore.

For water surfaces, the assumptions underlying PM do not hold because there is no direct relation-
ship between the temperature of the water surface and the net incoming radiation as radiation is
absorbed by the water column and the temperature of the water surface is co-determined by other
factors (mixing, etc.). Only for a very shallow layer of water (1 cm) the PM methodology could be
applied.

For bare soil and open water the Penman model is preferred. Although it partially suffers from the
same problems, it is calibrated somewhat better for open water and bare soil based on its empirical
wind function.

Finally, in crop simulation models the open water evaporation and bare soil evaporation only play
a minor role (pre-sowing conditions and flooded rice at early stages), it is not worth investing much

5.1. Code documentation 133

PCSE Documentation, Release 5.5

effort in improved estimates of reference value for E0 and ES0.

pcse.util.penman_monteith(DAY, LAT, ELEV, TMIN, TMAX, AVRAD, VAP, WIND2)
Calculates reference ET0 based on the Penman-Monteith model.

This routine calculates the potential evapotranspiration rate from a reference crop
canopy (ET0) in mm/d. For these calculations the analysis by FAO is followed as laid
down in the FAO publication Guidelines for computing crop water requirements - FAO
Irrigation and drainage paper 56

Input variables:

DAY - Python datetime.date object -
LAT - Latitude of the site degrees
ELEV - Elevation above sea level m
TMIN - Minimum temperature C
TMAX - Maximum temperature C
AVRAD - Daily shortwave radiation J m-2 d-1
VAP - 24-hour average vapour pressure hPa
WIND2 - 24-hour average windspeed at 2 meter m/s

Output is:

ET0 - Penman-Monteith potential transpiration
rate from a crop canopy [mm/d]

pcse.util.penman(DAY, LAT, ELEV, TMIN, TMAX, AVRAD, VAP, WIND2, ANGSTA, ANGSTB)
Calculates E0, ES0, ET0 based on the Penman model.

This routine calculates the potential evapo(transpi)ration rates from a free water surface
(E0), a bare soil surface (ES0), and a crop canopy (ET0) in mm/d. For these calculations
the analysis by Penman is followed (Frere and Popov, 1979;Penman, 1948, 1956, and
1963). Subroutines and functions called: ASTRO, LIMIT.

Input variables:

DAY - Python datetime.date object ␣
→˓-
LAT - Latitude of the site degrees
ELEV - Elevation above sea level m
TMIN - Minimum temperature C
TMAX - Maximum temperature C
AVRAD - Daily shortwave radiation J m-2 d-1
VAP - 24-hour average vapour pressure hPa
WIND2 - 24-hour average windspeed at 2 meter m/s
ANGSTA - Empirical constant in Angstrom formula -
ANGSTB - Empirical constant in Angstrom formula -

Output is a tuple (E0,ES0,ET0):

E0 - Penman potential evaporation from a free water surface [mm/d]
ES0 - Penman potential evaporation from a moist bare soil surface␣
→˓[mm/d]
ET0 - Penman potential transpiration from a crop canopy [mm/d]

134 Chapter 5. Code documentation

http://www.fao.org/docrep/X0490E/x0490e00.htm#Contents
http://www.fao.org/docrep/X0490E/x0490e00.htm#Contents

PCSE Documentation, Release 5.5

pcse.util.check_angstromAB(xA, xB)
Routine checks validity of Angstrom coefficients.

This is the python version of the FORTRAN routine ‘WSCAB’ in ‘weather.for’.

pcse.util.wind10to2(wind10)
Converts windspeed at 10m to windspeed at 2m using log. wind profile

pcse.util.angstrom(day, latitude, ssd, cA, cB)
Compute global radiation using the Angstrom equation.

Global radiation is derived from sunshine duration using the Angstrom equation: globrad = Angot
* (cA + cB * (sunshine / daylength)

Parameters

• day – day of observation (date object)

• latitude – Latitude of the observation

• ssd – Observed sunshine duration

• cA – Angstrom A parameter

• cB – Angstrom B parameter

Returns
the global radiation in J/m2/day

pcse.util.doy(day)
Converts a date or datetime object to day-of-year (Jan 1st = doy 1)

pcse.util.limit(vmin, vmax, v)
limits the range of v between min and max

pcse.util.daylength(day, latitude, angle=- 4, _cache={})
Calculates the daylength for a given day, altitude and base.

Parameters

• day – date/datetime object

• latitude – latitude of location

• angle – The photoperiodic daylength starts/ends when the sun is angle degrees
under the horizon. Default is -4 degrees.

Derived from the WOFOST routine ASTRO.FOR and simplified to include only daylength calcu-
lation. Results are being cached for performance

pcse.util.astro(day, latitude, radiation, _cache={})
python version of ASTRO routine by Daniel van Kraalingen.

This subroutine calculates astronomic daylength, diurnal radiation characteristics such as the at-
mospheric transmission, diffuse radiation etc.

Parameters

• day – date/datetime object

• latitude – latitude of location

5.1. Code documentation 135

PCSE Documentation, Release 5.5

• radiation – daily global incoming radiation (J/m2/day)

output is a namedtuple in the following order and tags:

DAYL Astronomical daylength (base = 0 degrees) h
DAYLP Astronomical daylength (base =-4 degrees) h
SINLD Seasonal offset of sine of solar height -
COSLD Amplitude of sine of solar height -
DIFPP Diffuse irradiation perpendicular to

direction of light J m-2 s-1
ATMTR Daily atmospheric transmission -
DSINBE Daily total of effective solar height s
ANGOT Angot radiation at top of atmosphere J m-2 d-1

Authors: Daniel van Kraalingen Date : April 1991

Python version Author : Allard de Wit Date : January 2011

pcse.util.merge_dict(d1, d2, overwrite=False)
Merge contents of d1 and d2 and return the merged dictionary

Note:

• The dictionaries d1 and d2 are unaltered.

• If overwrite=False (default), a RuntimeError will be raised when duplicate keys exist, else
any existing keys in d1 are silently overwritten by d2.

class pcse.util.Afgen(tbl_xy)
Emulates the AFGEN function in WOFOST.

Parameters
tbl_xy – List or array of XY value pairs describing the function the X values
should be mononically increasing.

Returns the interpolated value provided with the absicca value at which the interpolation should
take place.

example:

>>> tbl_xy = [0,0,1,1,5,10]
>>> f = Afgen(tbl_xy)
>>> f(0.5)
0.5
>>> f(1.5)
2.125
>>> f(5)
10.0
>>> f(6)
10.0
>>> f(-1)
0.0

class pcse.util.ConfigurationLoader(config)
Class for loading the model configuration from a PCSE configuration files

136 Chapter 5. Code documentation

PCSE Documentation, Release 5.5

Parameters
config – string given file name containing model configuration

pcse.util.is_a_month(day)
Returns True if the date is on the last day of a month.

pcse.util.is_a_dekad(day)
Returns True if the date is on a dekad boundary, i.e. the 10th, the 20th or the last day of each month

pcse.util.is_a_week(day, weekday=0)
Default weekday is Monday. Monday is 0 and Sunday is 6

pcse.util.load_SQLite_dump_file(dump_file_name, SQLite_db_name)
Build an SQLite database <SQLite_db_name> from dump file <dump_file_name>.

This document was generated on 2024-03-31/15:40.

5.1. Code documentation 137

PCSE Documentation, Release 5.5

138 Chapter 5. Code documentation

CHAPTER

SIX

INDICES AND TABLES

• genindex

• modindex

• search

139

PCSE Documentation, Release 5.5

140 Chapter 6. Indices and tables

PYTHON MODULE INDEX

p
pcse.crop.lingra, 100
pcse.db.cgms12, 128
pcse.engine, 52
pcse.models, 54
pcse.signals, 115

141

PCSE Documentation, Release 5.5

142 Python Module Index

INDEX

A
add_variable()

(pcse.base.WeatherDataContainer
method), 114

Afgen (class in pcse.util), 136
AgroManagementDataProvider (class in

pcse.db.cgms12), 129
AgroManager (class in pcse.agromanager), 56
ALCEPAS (class in pcse.models), 54
angstrom() (in module pcse.util), 135
astro() (in module pcse.util), 135

C
CABOFileReader (class in pcse.fileinput), 118
CABOWeatherDataProvider (class in

pcse.fileinput), 119
CGMSEngine (class in pcse.engine), 52
check_angstromAB() (in module pcse.util), 134
check_keydate()

(pcse.base.WeatherDataProvider
method), 113

ConfigurationLoader (class in pcse.util), 136
copy() (pcse.fileinput.CABOFileReader method),

119
copy() (pcse.fileinput.PCSEFileReader method),

121
CropCalendar (class in pcse.agromanager), 60
CropDataProvider (class in pcse.db.cgms12),

130
CropDataProvider (class in pcse.db.cgms8), 127
CrownTemperature (class in

pcse.crop.abioticdamage), 99
CSVWeatherDataProvider (class in

pcse.fileinput), 122

D
daylength() (in module pcse.util), 135
deregister_variable()

(pcse.base.VariableKiosk method),
110

doy() (in module pcse.util), 135

DummySoilDataProvider (class in pcse.util),
125

DVS_Partitioning (class in
pcse.crop.partitioning), 72

DVS_Phenology (class in pcse.crop.phenology),
68

E
end_date (pcse.agromanager.AgroManager prop-

erty), 58
Engine (class in pcse.engine), 52
Evapotranspiration (class in

pcse.crop.evapotranspiration), 76
ExcelWeatherDataProvider (class in

pcse.fileinput), 121
export() (pcse.base.WeatherDataProvider

method), 113

F
FAO_WRSI (class in pcse.models), 54
flush_rates() (pcse.base.VariableKiosk

method), 110
flush_states() (pcse.base.VariableKiosk

method), 110
FROSTOL (class in pcse.crop.abioticdamage), 96

G
get_end_date()

(pcse.agromanager.CropCalendar
method), 61

get_end_date()
(pcse.agromanager.TimedEventsDispatcher
method), 62

get_output() (pcse.engine.Engine method), 53
get_start_date()

(pcse.agromanager.CropCalendar
method), 61

get_summary_output() (pcse.engine.Engine
method), 53

get_terminal_output() (pcse.engine.Engine
method), 54

143

PCSE Documentation, Release 5.5

GridWeatherDataProvider (class in
pcse.db.cgms8), 127

I
initialize() (pcse.agromanager.AgroManager

method), 60
initialize() (pcse.timer.Timer method), 63
is_a_dekad() (in module pcse.util), 137
is_a_month() (in module pcse.util), 137
is_a_week() (in module pcse.util), 137

L
limit() (in module pcse.util), 135
LINGRA (class in pcse.crop.lingra), 101
LINGRA_NWLP_FD (class in pcse.models), 54
LINGRA_PP (class in pcse.models), 55
LINGRA_WLP_FD (class in pcse.models), 55
LINTUL3 (class in pcse.models), 55
load_SQLite_dump_file() (in module

pcse.util), 137

M
merge_dict() (in module pcse.util), 136
module

pcse.crop.lingra, 100
pcse.db.cgms12, 128
pcse.engine, 52
pcse.models, 54
pcse.signals, 115

N
N_Crop_Dynamics (class in

pcse.crop.lingra_ndynamics), 108
N_Demand_Uptake (class in

pcse.crop.lingra_ndynamics), 106
N_Stress (class in pcse.crop.lingra_ndynamics),

107
NASAPowerWeatherDataProvider (class in

pcse.db), 131
ndays_in_crop_cycle

(pcse.agromanager.AgroManager prop-
erty), 60

NPK_Crop_Dynamics (class in
pcse.crop.npk_dynamics), 86

NPK_Demand_Uptake (class in
pcse.crop.nutrients), 89

NPK_Stress (class in pcse.crop.nutrients), 92
NPK_Translocation (class in

pcse.crop.nutrients), 94

P
ParamTemplate (class in pcse.base), 112

pcse.crop.lingra
module, 100

pcse.db.cgms12
module, 128

pcse.engine
module, 52

pcse.models
module, 54

pcse.signals
module, 115

PCSEFileReader (class in pcse.fileinput), 120
penman() (in module pcse.util), 134
penman_monteith() (in module pcse.util), 134

R
RatesTemplate (class in pcse.base), 112
reference_ET() (in module pcse.util), 132
register_variable()

(pcse.base.VariableKiosk method),
110

run() (pcse.engine.CGMSEngine method), 52
run() (pcse.engine.Engine method), 54
run_till() (pcse.engine.CGMSEngine method),

52
run_till() (pcse.engine.Engine method), 54
run_till_terminate()

(pcse.engine.CGMSEngine method),
52

run_till_terminate() (pcse.engine.Engine
method), 54

S
set_campaign_start_date()

(pcse.db.cgms12.AgroManagementDataProvider
method), 129

set_variable() (pcse.base.VariableKiosk
method), 110

set_variable() (pcse.engine.Engine method),
54

SinkLimitedGrowth (class in pcse.crop.lingra),
104

SiteDataProvider (class in pcse.db.cgms12),
130

SiteDataProvider (class in pcse.db.cgms8), 128
SnowMAUS (class in pcse.soil), 67
SoilDataIterator (class in pcse.db.cgms12),

129
SoilDataIterator (class in pcse.db.cgms8), 127
SourceLimitedGrowth (class in

pcse.crop.lingra), 103
start_date (pcse.agromanager.AgroManager

property), 60

144 Index

PCSE Documentation, Release 5.5

start_wofost() (in module pcse.start_wofost),
132

StateEventsDispatcher (class in
pcse.agromanager), 62

StatesTemplate (class in pcse.base), 111
STU_Suitability (class in pcse.db.cgms12), 130
STU_Suitability (class in pcse.db.cgms8), 128
SWEAF() (in module

pcse.crop.evapotranspiration), 78

T
TimedEventsDispatcher (class in

pcse.agromanager), 61
Timer (class in pcse.timer), 63
touch() (pcse.base.StatesTemplate method), 112

V
validate() (pcse.agromanager.CropCalendar

method), 61
validate() (pcse.agromanager.TimedEventsDispatcher

method), 62
variable_exists() (pcse.base.VariableKiosk

method), 111
VariableKiosk (class in pcse.base), 109
Vernalisation (class in pcse.crop.phenology),

70

W
WaterbalanceFD (class in pcse.soil), 64
WaterbalancePP (class in pcse.soil), 64
WeatherDataContainer (class in pcse.base),

113
WeatherDataProvider (class in pcse.base), 113
WeatherObsGridDataProvider (class in

pcse.db.cgms12), 128
wind10to2() (in module pcse.util), 135
Wofost71_PP (in module pcse.models), 55
Wofost71_WLP_FD (in module pcse.models), 55
Wofost72_Phenology (class in pcse.models), 55
Wofost72_PP (class in pcse.models), 55
Wofost72_WLP_FD (class in pcse.models), 55
WOFOST72SiteDataProvider (class in pcse.util),

125
Wofost80_NWLP_FD_beta (class in pcse.models),

56
Wofost80_PP_beta (class in pcse.models), 56
Wofost80_WLP_FD_beta (class in pcse.models),

56
WOFOST80SiteDataProvider (class in pcse.util),

125
WOFOST_Assimilation (class in

pcse.crop.assimilation), 73

WOFOST_Leaf_Dynamics (class in
pcse.crop.leaf_dynamics), 79

WOFOST_Maintenance_Respiration (class in
pcse.crop.respiration), 75

WOFOST_Root_Dynamics (class in
pcse.crop.root_dynamics), 82

WOFOST_Stem_Dynamics (class in
pcse.crop.stem_dynamics), 84

WOFOST_Storage_Organ_Dynamics (class in
pcse.crop.storage_organ_dynamics), 85

Y
YAMLAgroManagementReader (class in

pcse.fileinput), 123
YAMLCropDataProvider (class in pcse.fileinput),

123

Z
zerofy() (pcse.base.RatesTemplate method), 112

Index 145

	What’s new
	An overview of new features and fixes
	What’s new in PCSE 5.5
	What’s new in PCSE 5.4
	What’s new in PCSE 5.3
	What’s new in PCSE 5.2
	What’s new in PCSE 5.1

	Crop models Available in PCSE
	Models available in PCSE

	User guide
	User Guide
	Background of PCSE
	Crop models in Wageningen
	Why Python
	History of PCSE
	Limitations of PCSE
	License

	Installing PCSE
	Requirements and dependencies
	Setting up your python environment
	Installing PCSE
	Testing PCSE

	Getting started
	An interactive PCSE/WOFOST session
	Running PCSE/WOFOST with custom input data
	Crop parameters
	Soil parameters
	Site parameters
	AgroManagement
	Daily weather observations
	Importing, initializing and running a PCSE model

	Running a simulation with PCSE/LINTUL3
	Reading model parameters
	Reading weather data
	Defining agromanagement
	Starting and running the LINTUL3 model

	Advanced topics

	Reference guide
	Reference Guide
	An overview of PCSE
	The Engine
	Continuous simulation in PCSE
	Input needed by the Engine
	Engine configuration files
	The relationship between models and the engine

	SimulationObjects
	Characteristics of SimulationObjects
	Simulation Parameters
	State/Rate variables

	The AgroManager
	Defining agromanagement in PCSE
	Crop calendars
	Timed events
	State events
	Finding the start and end date of a simulation

	Exchanging data between model components
	The VariableKiosk
	Broadcasting signals

	Data providers in PCSE
	Weather data in PCSE
	Required weather variables
	How weather data is used in PCSE
	Weather data providers available in PCSE

	Data providers for crop parameter values
	Generic data providers for parameters
	Data providers for agromanagement

	Global PCSE settings

	Code documentation
	Code documentation
	How to read
	Engine and models
	Agromanagement modules
	The Timer
	The waterbalance
	Crop simulation processes for WOFOST
	Phenology
	Partitioning
	CO2 Assimilation
	Maintenance respiration
	Evapotranspiration
	Leaf dynamics
	Root dynamics
	Stem dynamics
	Storage organ dynamics
	N/P/K dynamics
	Abiotic damage

	Crop simulation processes for LINGRA & LINGRA-N
	Overall grassland model
	Source/Sink limited growth
	Nitrogen dynamics

	Base classes
	VariableKiosk
	Base classes for parameters, rates and states
	Base and utility classes for weather data

	Signals defined
	Utilities
	Tools for reading input files
	Simple or dummy data providers
	The database tools
	The CGMS8 database
	The CGMS12 database
	The CGMS14 database
	The NASA POWER database

	Convenience routines
	Miscelaneous utilities

	Indices and tables
	Python Module Index
	Index

